High Performance Imaging Using Large Camera Arrays
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Figurel1: Differentcon gurationsof our cameraarray (a) Tightly pacled cameraswith telephotolensesandsplayed elds of view. This
arrangemenis usedfor high-resolutiorimaging(section4.1). (b) Tightly paclked camerasvith wide-angldlenseswhich areaimedto share
thesameeld of view. We usethis arrangemenfor high-speediideo capture(section4.2) andfor hybrid aperturdmaging(section6.2). (c)
Camerasn awidely spacedton guration. Also visible arecabinetswith processindgoardsfor eachcameraandthefour hostPCsneededo

runthesystem.

Abstract

The adwent of inexpensve digital image sensorsand the ability
to createphotographshat combineinformationfrom a numberof
sensedmagesare changingthe way we think aboutphotograph.
In this paperwe describea uniquearrayof 100 customvideocam-
erasthat we have built, and we summarizeour experienceausing
this arrayin a rangeof imagingapplications.Our goalwasto ex-
plorethe capabilitiesof a systemthatwould beinexpensve to pro-
ducein the future. With this in mind, we usedsimple cameras,
lensesandmountings andwe assumedhatprocessindarge num-
bersof imageswould eventuallybe easyandcheap. The applica-
tionswe have exploredincludeapproximatingacorventionalsingle
centerof projectionvideocamerawith high performancelongone
or moreaxes,suchasresolution,dynamicrange framerate,and/or
large aperture andusingmultiple camerago approximatea video
camerawith alarge syntheticaperture This permitsusto capturea
videolight eld, to which we canapply spatiotemporaliew inter-
polationalgorithmsin orderto digitally simulatetime dilation and
cameramotion. It alsopermitsusto createvideo sequencessing
customnon-uniformsyntheticapertures.
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1 Intro duction

Oneof the economictenetsof the semiconductoimdustryis prod-
uctsthatsellin large volumesarecheapwhile productsthatsellin
lowervolumesaremoreexpensve, almostindependentf thecom-
plexity of the part. For computersthis relationshiphaschanged
theway peoplethink aboutbuilding high-endsystemsratherthan
building a customhigh-endprocessarit is more costeffective to
usea large numberof commodityprocessors.

We arenow seeingsimilar trendsin digital imaging. As the pop-
ularity of digital cameragrows, the performanceof low-endim-
agerscontinuego improve, while the costof the high-endcameras
remainsrelatively constant. In addition, researchertiavze shavn
that multiple imagesof a static scenecan be usedto expandthe
performanceenvelopeof thesecameras.Examplesinclude creat-
ing imageswith increasedesolution[Szeliski 1994] or dynamic
rangelS.MannandR.W.Picard1994;DebevecandMalik 1997].1n
otherwork, Schechneand Nayarusedspatiallyvarying lters on
arotatingcamerao createhigh-resolutiorpanoramashatalsohad
high dynamicrangeor high spectrakesolution[SchechneandNa-
yar 2001]. Anotherusefor multiple views is view interpolationto
createthe illusion of a smoothlymoving virtual cameran a static



or dynamicsceng/Levoy andHanraharl996; Gortleret al. 1996;
Randeretal. 1997;Matusiketal. 2000].

Most of theseefforts employ a single moving high-quality cam-
eraviewing a staticscene.To achieve similar resultson dynamic
scenesmultiple camerasarerequired. This motivatedusin 1999
to think aboutdesigninga e xible array containinga large num-
ber of inexpensve video imagers. The multiple cameraarraythat
resultedconsistsof 100 video cameraseachconnectedo its own
processindpoard.Theprocessindgpoardsarecapableof localimage
computationaswell asMPEG2compression.

In section2, we review prior work in building multiple videocam-
erasystemsWhile thesesystemsaregenerallydirectedat speci ¢
applications they provide valuableinsightsinto the requirements
for a exible capturesystem. Section3 givesan overvien of our
multiple cameraarray and explainsin a little moredepththe fea-
tureswe addedto make it ageneraburposeresearchool.

Therestof this paperfocuseson our recentresultsusingthe cam-
eraarrayin differentimagingapplications.We startby exploring
waysof usingmultiple camerago createanaggreatevirtual cam-
erawhoseperformancexceedghecapabilityof anindividualcam-
era. Sincetheseapplicationsntendto approximatea camerawith
a single centerof projection, they generallyuse denselypacled
cameras. In particular section4 exploresthe creationof a very
high-resolutiorvideo cameran which the camerasreadjustedo
have modestlyoverlapping elds of view. We thenaimthecameras
inward until their elds of view overlap completely and we use
our system$ ne timing controlto provide a virtual video camera
with avery highframe-rateln bothof theseapplicationsthelarge
numberof camerasprovide someopportunity that would not be
presentn a singlecamerasystem. For the virtual high-resolution
imager one can perform exposuremeteringindividually on each
camerawhich for sceneswith spatiallyvarying brightnessallows
usto form amosaicwith high dynamicrange.For thevirtual high-
speedmager onecanintegrateeachframefor longerthanoneover
the frame-rate therebycapturingmore light per unit time thanis
possibleusinga singlehigh-speedtamera.

Sections5 and 6 considerapplicationsin which the camerasare
spreacbut, therebycreatinga multi-perspectie videocameraOne
importantapplicationfor this kind of datais view interpolation,
whosegoalis to move thevirtual obsenersmoothlyamonghecap-
turedviewpoints. For videolight elds, theproblembecome®neof
spatiotemporahterpolation.Sections shavsthattheoptimalsam-
pling patternto solve this problemusescamerasvith staggeredjot
coincident,triggertimes. It alsodescribesa spatiotemporainter-
polationmethodthat usesa novel optical o w variantto smoothly
interpolatedatafrom the arrayin bothtime andvirtual camerapo-
sition.

In section6 we considercombiningtheimagesrom multiple view-

pointsto createsyntheticapertureimagesequenceslf we align,

shift, and averageall the cameraimages,thenwe approximatea
camerawith a very large aperture.By changingthe amountof the
shift, we canfocusthis syntheticcameraat differentdepths. Us-

ing the processingpower on eachcameraboard,we canfocusthe
syntheticaperturecamerain real time, i.e. during video capture.
Alternatively, we canshapethe apertureto matchparticularchar

acteristicsof the scene.For example,we freezea high-speedan
embeddedn a naturalsceneby shapingthe aperturein bothtime
andspace.

2 Early Camera Arrays

The earliestsystemsfor capturingscenesrom multiple perspec-
tivesuseda singletranslatingcamergLevoy andHanraharl996]
andwerelimited to staticscenesDaytonTaylor extendecthis idea
to adynamicsceneby usinga lineararrayof still cameragTaylor
1996]. By triggeringthecamerasimultaneouslhandhoppingfrom
onecameramageto thenext, hecreatedheillusion of virtual cam-
eramovementhrougha“frozen” dynamicscene Manex Entertain-
mentusedmore widely spacedcamerasand addedan adjustable
trigger delaybetweencamerago captureimagescorrespondingo
a virtual high-speedcameraying aroundtheir scenes. Both of
thesesystemausedstill camerassothey werelimited to capturing
onespeci c virtual cameratrajectorythroughspaceandtime that
was x edby thecameraarrangement.

For capturinga moregeneraldataset,researcherturnedto arrays
of video cameras Like still camerasyideo camerasnustbe syn-
chronized,but they also presenta new challenge:enormousdata
rates. The pioneeringmultiple video cameraarray designis the
Virtualized Reality™ project[Randeret al. 1997]. Their goalwas
to capturemary views of a scendor videoview interpolation.The
rst versionof their systenrecordsvideousingVCRs,giving them
practicallyunlimitedrecordingdurationsbut low quality. Theirsec-
ondversionuses49 video camerasapturingto PC main memory
This systemhasbetterquality (VGA resolutionat 30 framesper
second)butis limited to nine-secondapturedurations Everythird
cameracapturesolor video. To handlethe bandwidthof thevideo
camerasthey requireonePCfor every threecameras.

While the VirtualizedReality™ projectusesrelatively high quality
camerastwo othergroupsexperimentedwvith large arraysof inex-
pensve camerasYangetal's DistributedLight Field Cameraen-
derslive dynamiclight elds from an8x8 arrayof commoditywe-
bcams[Yanget al. 2002]. Zhangand Chens Self-Recon gurable
Camerdrray usesA8 commodityEthernetamerasvith electronic
horizontaltranslationand pan controlsto improve view interpola-
tion results[Zhangand Chen2004a;Zhangand Chen2004b]. Al-
thoughthe designof thesesystemanake themmuchcheapethan
VirtualizedReality™in termsof percameracosts signi cant com-
promisesveremadeto usethesecommoditycamerasFirst, neither
of the arrayscould be synchronizedgcausingartifactsin the view
reconstructionsk-urthermoresincethey werelooking at singleap-
plications, neithersystemaddressedhe bandwidthchallengesof
building a generapurposdarge cameraarray Yangetal. choseto
implementa “ nite-vie w” systemmeaningeachcameraransmits
only enoughdatato reconstruca smallnumberof light eld views
perframetime. ZhangandChens camerasiseJPEGcompression,
but their choiceof Ethernetanda singlecomputerto run the array
limits themto a resolutionof 320x240pixels at 15-20framesper
second.

Resultsfrom theseefforts helpedguide our systemdesign. Since
our goal wasto createa generalpurposesystem,we wantedtight
controlover boththetiming of camerasindtheir positions.We also
neededo be ableto recordthe datafrom all the camerasbut with
far fewer PCsthanthe Virtualized Reality™ system. The system
thatwe designedo addresshesegoalsis describechext.

3 The Multiple Camera Array

While we hadwantedto use“off-the-shelf technologyto build our
cameraarray it becameclearearly on thatnoneof the commercial
video cameraswould have both the timing and positioning e xi-
bility that our systemrequired. As a result, we decidedto build



Figure2: Our camerdiles containan Omniision 8610imagesen-
sor, passie electronicsandalensmount. Theribboncablescarry
videodata,synchronizatiorsignals,control signals,andpower be-
tweenthetile andthe processingboard. To keepcostslow, we use
x ed-focus, x ed-aperturéenses.

a customimaging array but onein which we leveragedexisting
standardsas much as possibleto minimize the amountof custom
hardwarethatthe systemrequiredfor operation.A descriptionof a
preliminaryversionof this systemwas publishedin Wilburn et al.
[2002].

3.1 Hardware Components

Our systemconsistof threemain subsystemscameraslocal pro-
cessingooards,andhostPCs. The camerasare mountedon small
printed circuit boardsto give us maximum e xibility in their ar-
rangement. Each cameratile is connectedo a local processing
boardthrougha 2m long ribbon cable. Theseprocessingoards
con gure eachof the camerasand canlocally processhe image
databefore sendingit out to the host computerin eitherits raw
form or asan MPEG2video stream.A setof 4 PCshoststhe sys-
tem, either storing the collecteddatato disk, or processingt for
realtime display

CameraTiles. Oneof the mostcritical decisiongor thearraywas
the choiceof imagesensorsandtheir optical systems. While we
thoughtit wasreasonabléo assumehat computationwould con-
tinue to getcheaperwe foundit moredif cult to make thatsame
amgumentfor high-qualitylenses.Thus,we chooseto useinexpen-
sive lensesandopticsaswell asinexpensve sensorsin particular
we choseCMOS imagesensorsith BayerMosaiccolor lter ar

rays[Bayerl976]. Althoughthey have moreimagenoisethanCCD
imagers,CMOS sensorgrovide a digital interfaceratherthanan
analogone, and they offer corvenientdigital control over gains,
offsets,andexposuretimes. This makessystemintegrationeasier

Figure2 shavsoneof ourcamerailes. Forindoorapplicationspne
typically wantsa large working volumeanda large depthof eld.
For thesereasonswe use Sune DSL841Blenseswith a 6.1mm
focal length, an F/# of 2.6, and relatively wide diagonal eld of
view of 57 . For applicationsthatrequirea narrav eld of view
(usuallyoutdoors) we useMarshallElectronicsvV-4350-2.5lenses
with a 50mm x edfocal length,an F/# of 2.5,anda diagonal eld
of view of 6 . Both setsof opticsincludeanIR lter.

The cameratiles measure80mmon a sideand mountto supports
usingthreespring-loadedcravs. Thesescravs not only hold the

camerasn placebut alsolet us changetheir orientationsroughly

20 in ary direction. For tightly pacled cameraarrangementsye

mountthetilesdirectlyto sheet®f acrylic. For morewidely spaced
arrangementsye have designedplastic adapterghat connectthe

tiles to 80/20(anindustrialframing system)components.
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Figure3: Camergprocessingoardblock diagram

Figure4: Camergprocessindoard

Local ProcessingBoards. Figure3 shavs a block diagramof a
completecamerasystem,and gure 4 shaws the processindoard
for onecamera.The processingoardhas ve major subsystems:
a micro-controllerand its memory an MPEG2 compressqran
|IEEE1394interface, a clock interface,and an FPGA which acts
as masterdatarouter and programmablémage computationunit.
By choosingestablishedtandardsmostof thesesubsystemsould
beimplementedwith existing off the shelfchip sets.

We chosethe IEEE1394High PerformanceSerial Bus [Anderson
1999] (also known as FireWire R andi-Link R) asour interface
betweerthe processindoardsandthe PCs.It guaranteea default
bandwidthof 40MB/sfor isochronousransfersi.e. datathatis sent
at a constantrate. This is perfectfor streamingvideo, andindeed
mary digital videocameragonnecto PCsvia IEEE1394.It is also
well suitedfor a modular scalabledesignbecauset allows up to
63 deviceson eachbusandsupportgplug andplay. Anotherbene t
of IEEE1394is the cablesbetweerdevicescanbeupto 4.5mlong,
andanentirebuscanspanover 250m. Thus,camera®asednsuch
a systemcould be spacedrery widely apart,possiblyspanninghe
sideof abuilding.

Evenwith this high-speednterface,anarrayof 100videocameras
(640x480pixel, 30fps, one byte per pixel, Bayer Mosaic) would

requireroughly 25 physical busesto transferthe roughly 1GB/sec
of raw data,anda comparablenumberof PCsto receveit. Rather
thanlimiting theimagesizeor framerate,we decidedto compress
the video usingMPEG2beforesendingit to the host. The default

4Mb/s bitstreamproducedoy our SONY encoderdranslatesnto a

compressiomatio of 17.5:1for 640x480,30fpsvideo. To ensure
thatcompressiomoesnotintroduceartifactsinto our applications,
we designedhe camerago simultaneoushstoreup to 20 frames
of raw videoto local memorywhile streamingcompressedideo.

This letsuscompareMPEG2compressedideowith raw videoas

anof ine sanitycheck.
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Figure5: Cameraarrayarchitecture

An embeddednicroprocessomanageshecomponentin thecam-

era and communicateswith the host PCsover IEEE1394. The

FPGA is usedto route the imagedatato the correctdestination,
usually eitherthe IEEE1394chipsetor the MPEG2 compression
chip. It canalsobecon guredto operateadirectly ontheimagedata
usingits local DRAM for storingtemporarieandconstantandthe

SRAM asaframebuffer. Codein asmallbootROM con guresthe

IEEE1394interfacesothathostPCscandownloada moresophis-
ticatedexecutableandcon guration codeto theboard.

3.2 System Architecture

Figure5 shaws the high-level architectureof our system.Eachof
our camerass a separatdEEE1394device with threeports. The
camerasreconnectedn atree,with oneport connectingo a par
entandoneor two portsleadingto child nodes. The parentport
of theroot nodeis connectedo the hostcomputerwhich hastwo
stripedIDE harddrivesto capturetheimagedata.For largearrays,
we mustusemultiple PC's andIEEE1394buses.Theoreticallythe
40MB/s streamingbandwidthof IEEE1394shouldaccommodate
62 compressetideostreamsbut implementatiordetails(busarbi-
trationandour inability to getcycle-accurateontrol over the bus)
limits usto 30 cameraperbus. We run anetworkedcameracontrol
applicationthatlets us drive the operationof the entirearrayfrom
onePC.

The timing requirementdor the array were stricterthan could be
achieredusinglEEE1394communicationespeciallywith multiple
PCs. To achieve the desiredtiming tolerancewe routea common
clock andtrigger signalsto the entire array using an extra set of
CAT5 cables.Thesecablesroughly matchthe IEEE1394topology
exceptthey form a singletreeevenif multiple [IEEE1394busesare
used. A single“master”root boardin the array generatests own
27MHz clock andsendst to two childrenvia CAT5 cableswhich
thenbuffer the clock andsendit to two morechildren,andso on.
The masteralsogenerates triggerwhich is bufferedandrepeated
to all otherboards.Thistriggeris usedto synchronizeéhe cameras
andprovidesatiming signalwith no morethan200nsof skew be-
tweenary two processingpoards.To putthisin perspectie, 200ns
is onethousandtiof our minimumintegrationtime of 205ns.

Most systemswvould usethe triggerto synchronizeall of the cam-
eras.In facttheearly prototypeof our system{Wilburn etal. 2002]
usedit for this purposeaswell. The nal systemprovidesanarbi-
trary, constantemporalphaseshift for eachcamera.Becausehe
timing signalsfor the imagesensorsaregeneratedy the FPGAs,
this was doneby addingprogrammabldimer resetvaluesto the
FPGAcode.Thus,usingjust onetrigger signal,we canresetall of
thecamerado arbitraryphaseoffsets.

3.3 Results

Our multiple cameraarray capturesVGA video at 30 framesper
secondfps) from 100 camerago four PCs.Thedefault MPEG bit

rateis 4Mb/s, but we arefree to alter the bit rate or even stream
I-frameonly video. At 4Mb/s,we cancapturesequencesp to two

anda half minuteslong beforewe reachthe 2GB le sizelimit of

our operatingsystem.We have notyet neededo extendthis limit.

4 Improved Imaging Performance

By combiningdatafrom an array of cameraswe can createan
aggreate virtual camerawith greatlyimproved performance.Al-
thoughonecoulddesignopticalsystemshatensureacommoncen-
terof projectionfor all of thecamerasthesesystemdbecomecostly
andcomple asthenumberof cameragrows. Insteadwe packthe
camerasscloselyaspossibleto approximatesinglecenterof pro-
jectionandcompensatéor parallaxin software. Here,we discuss
two high-performancapplications:high-resolutionhigh-dynamic
rangevideocaptureandhigh-speediideocapture.

4.1 High-Dynamic
Video

Range and High-Resolution

If we tightly packour camerasandaim themwith ahutting or par

tially overlapping elds of view, we createa high-resolutiorvideo
camera.Usingthis con guration andexisting techniquedrom the
imagemosaicingliterature,we canregisterandblendthe images
to createa singleimageof high resolution. One advantageof us-
ing mary camerador this taskis thatwe canmeterthemindividu-

ally. This allows usto capturescenesith a greaterdynamicrange
thanourcameraganrecordindividually, providedthatthedynamic
rangein eachcameras narrov eld of view is small enough. For

scenesn which eventhelocal dynamicrangeexceedsour sensors'
capabilitieswe cantraderesolutionfor dynamicrangeby increas-
ing the overlapof thecameras'elds of view, sothateachviewing

ray is obsened by multiple cameraswith differentexposureset-
tings.

To demonstrat¢hisidea,we arrangedur camerasn adensel2x8
arraywith approximately60% overlapping elds of view, shavnin
gure 1(a). Eachcamerahasa telephotolenswith a roughly six
degreediagonal eld of view. With 50% overlapbetweeradjacent
camerasmostpointsin thescenereobseredby four camerasand
theentirearrayhasatotal eld of view of 30 degreeshorizontally
and15degreesvertically.

Color Calibration. Becausehe inexpensve sensorsn our array
have varying color responseswe must color matchthemto pre-
ventartifactsin the imagemosaic. Color calibrationis important
in ary applicationinvolving multiple camerashut it is critical in

this application,sincedifferentpartsof the imagearerecordedby
differentcameras We mustalsodeterminethe responseurves of

our camerasf we wish to createhigh dynamicrangeimages.With

gammacorrectionturnedoff in thecamerastheresponseurvesof

our sensorsare reasonablylinear exceptat the low andhigh ends
of their outputrange. We have devisedan automaticcolor match-
ing routinethatforcesthis linearresponseo beidenticalfor all of

the camerasandcolor channelsy iteratively adjustingthe offsets
andgainsfor eachcolor channelin every camera.Our goal is to

ensureuniformity, not absoluteaccurag—our nal mosaicscanbe
convertedto anothercolor spacewith onelasttransformation.



Eachiteration of our calibrationroutine takes imagesof a white
targetunderseveral differentexposurelevels. Thetamgetis placed
closeenoughto the arrayto Il the eld of view of all cameras.
Theexposuresettingis the actualdurationfor which the sensotin-
tegratedight andis very accurate Theroutinecalculategheslopes
andoffsetsof the sensoresponseshencomputesen settingsto
matcha target response We choosea line mappingthe minimum
responsdo 20 andthe maximumto 220, safely inside the linear
rangeof our sensorsDoing this for eachchannelusingimagesof
a white tamget alsowhite balanceur sensors.The entire process
takeslessthanoneminute.

Assembling HDR Image Mosaics. We use Autostitch [Brown
and Lowe 2003]) to createour image mosaics. Autostitch uses
a scale-ivariantfeaturedetectorto detectcorrespondindeatures
in overlappingimages bundleadjustmento estimateglobally op-
timal homographiego align all of the images,and a multi-band
blendingalgorithmto combinethe registeredimagesinto a single
mosaic. The camerasneednot be preciselyaimed, becauseAu-
tostitch nds appropriatthomographieso performseamlesgmage
stitching. Giventhe34mmseparatioof ourcamerasndourscene,
roughly120maway, we cantolerate+/- 20mof depthvariationwith
lessthat0.5 pixels of disparityin themosaicedmage.

For our application,we have modi ed Autostitch in two ways.
First, we useour responsecurves and the cameras'exposuredu-
rationsto transformpixel valuesfrom the cameradnto a oating
point, relative irradiancevalue beforeblending. Thus, the output
of theblendingis a oating pointimage. Our secondnodi cation
is replacingthe weightsfor the multi-bandblendwith a con dence
measurehat is high for pixel valuesin the middle of the sensor
responseandlow for saturatedbr underegposedpixels, aswell as
beinglow for pixelsatthe edgesf eachcamera.

Results. Figure 6 shavs a comparisorof 3800x 2000 pixel mo-
saicscapturedwith uniform andindividually selectedcameraex-
posuretimes. The uniform exposurelosesdetailsin the brightly lit
hills anddarkforegroundtrees. The individually meteredcameras
captureawiderrangeof intensitiesput they still have saturatednd
underexposedpixels wheretheir dynamicrangeis exceeded.An
evenbetterpicturecanbeacquirecby takingadwantageof thecam-
eras'overlapping elds of view to imageeachpoint with different
exposuredurations. Figure 7 (a) shovs a mosaiccapturedusing
cameraavith oneof four exposuretimes(0.20ms,0.62ms,1.4ms,
and3.07ms).Theincreasedocal dynamicrangecanbe seenn the
coveredwalkway in theinset(c).

To evaluatetheoverallimagequality, wetookapictureusinga3504
x 2336 pixel Canon20D con gured with nearlythe same eld of
view and comparedt to one frame of our high-resolutionvideo
(gure 7(b)). Theresultsareencouraging.While the insetsshav
thatthe Canonimageis superior the effective resolutiondifference
is modest. Plotting pixel intensitiesacrossedgesin the two im-
agesshavedthatthe Canonsresolutionis roughly 1.5timesbetter
Sincewe could easilyadd cameraspr reduceoverlapto increase
resolution,this degradedresolutionis not a seriouslimitation. In
fact, resolutionchartmeasurementwith our camerasndicatethat
their effective resolutionis about400 pixels horizontally not 640,
sotheresolutionof themosaicis not muchworsethanwhatwe see
from asinglecamera.

Whatis more surprisingis that the contrastof our imagemosaic
is noticeablyworsethanthe D20. Thisis dueto light leakageand
aberrationsn the lenses.Overall, theseresultsshaw thatit is pos-
sibleto uselarge numbersof inexpensve camerago build avirtual
cameraof both high dynamicrangeand high resolution. In this
examplewe uselarge overlapsso four camerasview eachpixel.
Ourarraycaneasilybe con guredto reducethe overlapandcreate

larger mosaics.For example,reducingthe cameraoverlapto 10%
would yield very large mosaics(roughly 6900 x 3500 pixels) us-
ing the samenumberof cameras(Remembethatthesearevideo
cameraswe know of nonon-classi edvideocameraf comparable
resolution.)This e xibility raisesthe questionof how to optimally
allocatecameraviews for imaging. This answerin turn depends
onthedynamicrangeof thesceneandthealgorithmusedfor adap-
tively settingtheexposurdimes. We arestartingto look atadaptve
meteringalgorithmsfor cameraarraysto addresshisissue.

4.2 High-Speed Video

The previous applicationtakesadvantageof our e xible mounting

systemandexposurecontrolto increasaheresolutionanddynamic

rangeof video capture Thetiming precisionof our arrayoffersan-

otheropportunityfor creatinga high-performanceggreate cam-

era: high-speedvideo capture. We have previously describeda

methodfor con guring the array as a single, virtual, high-speed
video cameraby evenly staggeringhe camerariggertimesacross
the30Hzframetime [Wilburnetal. 2004]. Using52tightly packed

camera®rientedwith wholly overlapping elds of view, we simu-

lateda 1560framepersecondfps) videocamera.

Onebene t of usingacameraarrayfor thisapplicationis thatframe
rate scaledinearly with the numberof cameras.Also, compress-
ing thevideoin parallelat eachcamerareduceshe instantaneous
datarateandpermitsusto streamcontinuouslyto disk for several
minutes. By contrast,typical commercialhigh-speeccamerasare
limited to capturedurationsthat t in local memory often aslow
asafew secondsandrequiresomemeango synchronizethe cap-
turewith the high-speedvent. Finally, unlike a singlecamerathe
exposuretime for eachframecanbe greaterthantheinverseof the
high-speedramerate. In otherwords,we canoverlapframetimes
amongthe camerasThis allows usto collectmorelight andreduce
noisein our imagesat the costof increasednotionblur. By tem-
porally decowolving the capturedvideo, we canrecorer someof
the lost temporalresolution[Wilburn et al. 2004; Shechtmaret al.
2002].

As with the imagemosaicshefore,we mustaccountfor the slight

parallaxbetweenviews from differentcameras.We assumea rel-

atively shallov or distantsceneand use planarhomographiego

aligntheimagesfrom all camerado the desiredobjectplane.This

leadsto artifactsfor objectsnot atthe assumedcenedepth.In the
next sectionwe extendthis high-speednethodto the caseof more
widely spaceccamerasandin section5.2 we describea technique
for interpolatingbetweernthe views producedby the cameras.As

wewill seethistechniquecanalsobeusedto correctthe misalign-
mentsin our high-speedideo.

5 Spatiotemp oral Sampling

We now turn to a differentregime for the array: camerasspaced
to samplea very wide spatialaperture. Data capturedfrom such
arrangementsanbe usedfor syntheticaperturgphotograply, view

interpolation,andanalysisof scenestructureandmotion. We treat
syntheticaperturephotograpk in section6. For the othertwo ap-
plications,a major challengeis establishingcorrespondenceise-
tweenpointsin differentviews. Generallyspeaking,algorithms
for computingcorrespondencgerformbetterwhenthemotionbe-

tweenviews is minimized. In this section,we shav how to reduce
imagemotionbetweerviews of dynamicscenedy staggeringam-
eratrigger times. Section5.2 describesa new view interpolation
algorithmbasedn optical o w.



(a) (b)

Figure 6: High Dynamic RangePanoramicVideo. By meteringcamerasndividually, we can increasethe total dynamicrangeof the
panoramiwvideo. (a) In thisimage,all camerasresetto the sameexposure Noticethe saturatedreasn sunlightanddarkregionsin shade.
(b) For this mosaic,eachcameras exposurewassetsuchthatthe averagepixel valueis in the middle of the sensorange,andtheresulting
high dynamicrangeimagewastone mappedor display (andprinting). More detailsarerevealed,including the radardishandhills onthe
horizonanddarkareasn theforegroundtrees.Theroof of the coveredwalkway, however, wasoutsidethe rangeof the cameraghatviewed
it. Thegraycoloris dueto tonemapping—weado notactuallyknow how brighttheroof shouldbe. Thesky in thetop left of thepanoramavas
alsooverexposed.

(@) (b)
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Figure 7: Comparisorwith a Canon20D. (a) Settingthe exposuretimes so eachpixel is viewed by four cameraswith varying exposure
durations(0.20ms0.62ms,1.4ms,and3.07ms).This schemancreaseshe local dynamicrangeof the mosaicrelatve to gure 6(a)or 6(b).

Theinset(b) shavs thatwe now have valid datafor the coveredwalkway. Thecolor variationsalongthebordersof thepanoraman (a) result
from viewing thoseportionsof the scenewith fewer thanfour differentexposures.This leadsto artifactsin areaswherewe have no valid

data.(c) An imageof the samesceneakenwith a Canon20D, which hasa resolutionof 3504x 2336pixels. (d) is theinsetof the covered
walkway from the Canon,for comparison.Our panoramaiasasmuch(or more)dynamicrangeasthe Canonimage. However, the Canon
imagesare sharperand have more contrastthat the panorama.The latter is dueto straylight andaberrationsn our relatively low-quality
lenses.



5.1 Planar Camera Arrays

To reasorguantitatvely aboutview samplingin spaceandtime, we
will considera planarcameraarray whoseimagesare all aligned
to a commonfronto-parallelreferenceplane. This arrangemenis
usedfor light eld renderingaswell asmary of theapplicationsn
this paper More complicatedsurfacescanbe tessellatedo form
trianglesof camerador which this analysisalso applies. Given
this framework, we asktwo questionsFirst, whatis the maximum
possibleimagemotionbetweentwo views from differentpositions
andtimes?Secondhow shouldwetrigger x edframeratecameras
to minimizeimagemotion?

Figure 8 shavs how motionin the imageson the referenceplane
is relatedto the scenegeometryand velocities. We assumethe
scenehasnearandfar depthlimits with signeddistance®z,e5r and
Dz 4 from thereferenceplane,andthereferenceplaneis optimally
placedatadepthZy asdescribedy Chaietal. [2000]. Foracamera
spacingof Dx, theparallaxDp in thealignedimagesfor apoint P at
adistanceDz, fromthereferenceplaneis Dp= Dx Dzp=(Dzp+ Zp).
If wede ne the“relative depth”d of thepointto be Dzp,=(Dzp + Zp),
this simpli es to Dp= Dx d.

The worst-caseparallaxoccursat the nearand far depth planes.
The worst casetemporalmotion will occurif P is moving at the

maximumvelocity in the scene,v, on the neardepthplane,such
thatthe vector RR. 1 is orthogonalto the projectionray from Cy

attimet+ 1. If we assumeanarrav eld of view for our lenses,
we canapproximatethis with a vectorparallelto the focal plane,
shavn asvDx. If P hasvelocity v, the maximumtemporalmotion

of its imagein Cqy is VDtZo=(Zy + Dznear). Equatingthis motionto

themaximumparallaxfor P in aneighboringcamerayields

_ DxDznear

D= =2

1)

This is the time stepfor which maximumimagemotion between
views at the samecameraequalsthe maximumparallaxbetween
neighboringviews. If we represena view by two spatial(x;y) co-
ordinatesandonetime coordinate, measuringime in increments
of thetime stepDt andspacen unitsof cameraspacinggprovidesa
normalizedsetof axesto relatespace-timeviews. Becausanotion
dueto parallaxandtemporalmotion are not orthogonal,the true
distancemeasures the Euclideanspatial distanceplus the tem-
poral distance. Minimizing this distancemeasurebetweenviews
minimizesthe maximumimagemotion.

This metric givesus a methodto optimizeour distribution of sam-
plesin spaceandtime. Figure9 plotsthe (x;t) coordinateof cap-
turedviewsfor alinearcameraarraywith differentvaluesof Dx and
Dt. Sincethe objectmotionis oftennotknown a priori, we wanta
samplingthatworksfor awide varietyof motionvectors.In scenes
with little motion( gure 9(a))thetemporalpatternmaleslittle dif-
ference sincethe mainimagemotionis from parallax. Whenob-
jectmotioncausedargeimagechangeg gure 9(b)), synchronized
time samplesreoneof theworstsamplingpatternssinceit creates
denserows of sampleswith largeblankareas In this casethebest
timing for the camerads one wherethe available time resolution
increasesvith increasingparallaxdistancefrom the main sample.
As shavn in gure 9(b), acrossanarrayof N camerasgvery one
of theframe-timeN possiblestartingtimesis used.Notethatusing
this offsettiming patterndoesnot hurtif scenevelocitiesaresmall,
becaus¢hechangesn time makelittle differencan theimageshat
areformed.

Po «Dp = P1 ReferencePlane

\// \!
C1 G
le—— Dx —>

Figure8: Thetemporalandspatialview axesarerelatedby image
motion. For a given scenecon guration, we candeterminea time
stepDt for which the maximumimage motion betweentemporal
sampless equalto themaximumparallaxbetweerspatiallyneigh-
boring views. If we measurdime in incrementsof Dt and space
in incrementf the cameraspacing thenthe Manhattandistance
betweenview coordinatescorrespondgo the maximum possible
imagemotion betweerviews.

(@ (b)

Figure9: Plotsshawing (x,t) view coordinategor differentamounts
of object motion, and different samplingpatterns. Both gures
shawv a uniform time samplingin red and an optimal distribution
of samplesn blue. (a) For sceneswith large cameraspacingsor
very slow motion, time shifting of the camerasnalesilittle differ-
ence.(b) For scenesvith smallcameraspacing®or high velocities,
uniform samplingcreatesdenserows of samplesandleaves most
of the areaunsampled. An optimized samplepatternstartseach
cameraat Q i mod N, wherei is theindex of the cameraN is
thenumberof camerasandQ is choserto beroughly 1/3 andalso
relatively primewith N.

5.2 Multibaseline Spatiotemp oral Optical Flow

Better spatiotemporasamplingwould improve even the simplest
view interpolationalgorithmslik e blending,but the samplingden-
sitiesrequiredfor ghost-freemagesusingblendingareprohibitive.
Insteadwe createda novel optical o w variantfor generatinghew
views from a planarvideo cameraarray Our modi ed spatiotem-
poral optical o w algorithmhastwo novel features. Optical ow
typically computeso w betweerntwo imageshy iteratively warping
onetowardsthe other Our rst modi cation is to solve fora ow
eld atthe(x;y;t) locationof our desiredvirtual view. We werein-
spiredto compute o w for the pixelsin the new imageby Kanget
al. [2003]. They notedthatfor avideosequencezcomputingo w at
a frame halfway betweentwo imagesin a video sequencéandles
degenerateo w casedetterandavoidsthehole- lling problemsof
forward-warpingwhencreatingnew views. We extendthe method
to compute o w at a desiredview in our normalized(x;y;t) view
space.We modi ed therobustoptical o w estimatorof Black and



Anandan[1993] usingcodeavailableon the authors web site. We
iteratively warpthenearesfour capturedmagesowardthevirtual
view andminimize the weightedsumof pairwiserobustdataand
smoothnessrrorterms.

Motion cannotbemodelledconsistentlyfor fourimagesatdifferent
spacetimdocationsusing just horizontaland vertical image o w.
The secondcomponentf our algorithmis separatelyaccounting
for parallaxandtemporalmotion. The standardntensityconstang
equatiorfor optical o w is:

I(i;j;t) = 1(i+ uDx; j+ vDi;t + DX) 2

Here, (i; j;t) representhe pixel imagecoordinatesandtime, and
u andv arethe horizontaland vertical motion at an image point.
Ourmodi ed intensityconstang equatiorrepresentsonstang be-
tweenthe virtual view anda nearbycapturedmageat someoffset
(Dx; Dy, Dt) in the spaceof sourceimages:

Wirtual (i; 13 ¥it) = Isource(i+ uDt+ dDx; j+ vDt+ dDy; t+ DY) (3)

The ow componentsare separatednto parallax motion, deter

mined by a pointss relative depthd and the spatial distancebe-
tweenviews, andtemporalmotion, the productof thetime between
views andthe projection(u; V) of thetemporalmotionontotheim-

ageplane.

For eachvirtual view, we chooseinput views for the ow algo-
rithm by computinga three-dimensiondDelaunaytriangulationof
the camerasamplingpointsandselectingthe views from thetetra-
hedronwhich encloseghe desired(x; y;t) view. Theseimagesare
progressiely warpedtoward the commonvirtual view at eachit-
erationof the algorithm. We cannottestthe intensity constang
equationfor eachwarpedimage agpinsta virtual view. Instead,
we minimizetheerrorbetweerthefour warpedimageshemseles
usingthe sumof the pairwiserohust intensity constang error es-
timators. This producesa single o w map, which canbe usedto
warp the four sourceimagesto the virtual view. We currentlydo
not reasonaboutocclusionsand simply blendthe warpedimages
usingtheir barycentrioveightsin thetetrahedron.

Results. For our experimentswe con gured the camerasn a 12-
by-8 arraywith athreeinch cameraspacing We determinedexper

imentally that nine staggersacrossthe 30Hz frametime would be
sufcient for our scenesowe createda 3x3 grid of triggersthatis

locally uniform andreplicatedit acrosshe array Becauseur ap-
plication compareseighboringimages,locally uniform sampling
is sufcient. We calibratedour camerago determinetheir rela-
tive displacementm thecamergplaneusingtheplaneplusparallax
framevork describedy Vaishetal. [2004].

Figure 10 shaws the resultsof improved spatiotemporasampling
and our view interpolationalgorithm. For referencewe shov a
cross-dissole betweertwo subsequerframesfrom onecamerao
illustrate the temporalmotion betweenframes. Cross-dissoles,
or blending, are the simplestinterpolationmethodfor arraysof
camerassynchronizedo trigger simultaneously Staggeringthe
cameratrigger timesto samplemore uniformly in space-timem-
proveseventhis simpleinterpolationmethod. Figure 10(b) shavs
aweightedblendof four views from the samearraywith staggered
triggertimes. The ghostingis greatlyreduced.Finally, the image
on the right shaws the resultsof our multibaselinespatiotemporal
optical o w algorithm.Becaus¢hecomputedo w is consistenfor
the four views, whenthe sourceimagesare warpedand blended,
theball appearsharp.

Discussion.We usedimproved samplingto createa relatively sim-
ple interpolationmethodthat usesoptical o w to accountfor both
parallaxmotion andtrue objectmotionin the scene.This method

allows usto estimateary cameramagethatis insidethetime and
spatialextent of the original cameraarea. If we hold the virtual
viewpointsteadyandsynthesizenew views ateachtriggertime, we
producearegisteredhigh-speedideo. We arefree, however, to al-
terthevirtual view positionandtime arbitrarily (within the spanof
thearray),enablingbothtime dilation andvirtual cameramotion.

While our spatiotemporalvorkswell in practice,it doesoccasion-
ally suffer from the usualartifactsof optical ow, suchaslarge
dominantmotionsmaskingthemotionof smallerregionsandprob-
lemswhentheimagemotionis too large. Thusascameraspacings
increasemoresophisticatednethodswill berequiredto interpolate
new views. Many methodsdevelopedto work with synchronized
camerashouldbene tfrom usingcamerasvith moreoptimalsam-
ple timing. For example,segmentation-basestereomethodshave
recentlybeenprovenvery usefulfor spatialview interpolation[Zit-
nick et al. 2004] andanalysisof structureandmotionin dynamic
scenegTaoetal. 2001; ZhangandKambhamett?001]. Because
thesemethodsmatchsmallimageregionsacrossviews, onewould
expectthemto bene t from reducedmagemotionbetweemearby
space-timeviews.

Thehigh-resolutiorvideocaptureapplicationdividedthe total mo-
saicresolutionby four to increasehe dynamicrange.By contrast,
staggereccameratriggers increasetemporal samplingresolution
with essentiallyno cost. Thus,we believe thatstaggerediming for
video camerasarraysis alwaysbene cial. If scenevelocitiesare
small,thetemporaloffsetsareinconsequentialf thevelocitiesare
large, staggeredcamerascan captureeventsthat would otherwise
go unnoticedminimizing interpolationartifacts.

6 Synthetic Aperture Photography

Spatiotemporaliew interpolationsimulatesanarrav moving aper
ture in space-time.If insteadof interpolatingviews, we align the
imagestaken acrossthe apertureto a planeand averagethemto-
gether we approximatea camerawith avery large aperture Shift-
ing thealignedimagesvariesthefocal depthfor the systemLevoy
andHanraharl996;Isakseret al. 2000; Vaishet al. 2004]. Warp-
ing themin additionto shifting thempermitsthe focal planeto be
tilted [Vaishet al. 2005]. In theseexperimentswe acceleratehe
computatiorby having theFPGAIn eachcameraalign andshift the
video beforeit is compressedndsentto the hostPCs. This gives
usareal-time(live) syntheticaperturevideograply system.Specif-
ically, asthe userinteractvely adjuststhe objectfocal depth,the
hostPCsbroadcasthe requiredimageshifts to the cameras Cur
rently, the processingpower of our hostPCslimits usto 15 video
cameraperPC.

Theapertureof atraditionalcamerds acylinderin spaceandtime.
The heightcorrespondso the exposuretime andthe crosssection
is theshapeof thelensaperture Syntheticaperturgphotograph in-
creaseshe spatialextentof the apertureby samplingit with mary
camerasWe now considertwo exotic apertureshapesnadepossi-
ble by our array The rst, mattedsyntheticaperturephotograpl,
tailorsanapertureo only captureraysthatseethrougha partialoc-
cluder Theseconctreates hybrid space-timaperturghatimages
with highdepthof eld andlow motionblurin low-light conditions.

6.1 Non-linear Synthetic Aperture Photography

The syntheticaperturecameraeffect permitsoneto seea subject
hiddenbehindpartialoccludersy blurring the occluderacrosshe
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Figure 10: Betterspatiotemporasamplingimprovesview interpolation. (a) A simplecrossdissohe betweentwo subsequenframesfrom
one30Hz camera.(b) Synchronizinghe camerasvith staggeredriggertimesincrease®ur view samplingdensityin spaceandtime. This
view, createdusing a weightedaverageof four input views, shavs muchlessghosting. (c) Better spatiotemporaliew samplingreduces
imagemotion betweernviews, makingoptical o w morerobust. Here,we warpthe four sourceimagesto the desiredvirtual view usingour
multibaselinespatiotemporabptical o w algorithm. The warpedimagesare blendedusing the sameweightsasin the centerimage. No
doubleimagesarepresenbecausgarallaxandmotionfor the ball arecorrectlyrecosered.

image.However, theoccluderis notrenderednvisible,andthesyn-
theticaperturephotographattenuateshe signalof interest,i.e. the
subject.SupposéhatN camerawview the scenewith measurement
noisee. To createthe syntheticaperturémage,we align the views
from all camerago oneplaneandaveragethemtogether If only K
cameraseethroughtheoccluderto ary givenpointon thesubject,
thenthe signalin the syntheticapertureimageis attelﬂJatedJy a
factorof K=N, while the measubememoisefalls by1=" N. Thus,
theSNRhasfallenby atleastk=" N relative to the SNRof asingle
image. Sincethe occluderdoesnot completelyaverageout, it will
addanadditionalnoisecomponent.

If we knew, for eachcamerawhich pixels sav throughthe partial
occluderto the subject,we could averageonly the contritutions
fromtheunoccludegixels. AveragingusttheK Bnoccludecpixels
would increaseghe SNR of a singleimageby = K anddoesnot
reducethe contrastof imageby attenuatinghe signal. In practice,
mary pixels are mixture pixels, containinginformationfrom both
theforeground%ndthe backgroundsothe SNRimprovementwill

besmallerthan K.

Toimplementhis, we createa binarymatteimagefor eachcamera.
The matteis onefor pixels which arenot blocked by the occluder
andzerootherwise Althoughbinarymattesdiscardinformation,in

orderto usefractional(i.e. alpha)values we mustalsorecover the
foregroundcolor. The binary matteis a robust, conserative solu-
tion. To createthe mattedsyntheticaperturemage,we divide the
sumof the aligned,mattedinputimagesby the sumof thealigned
mattesat eachpixel.

Thereare several ways one might imaginecreatingthe occlusion
mattes. Onethat we have implementeddenti es all of the pixels
thatvarysigni cantly overtimein videofrom eachcameraBarring

motion of the occluderand interre ections betweenthe occluder
andthe subjectbehindit, thesepixels capturesometime-varying

portionof thesubjectandhencearenotoccluded We identify these
pixelsby computingthe varianceof eachpixel over eachsecondf

inputvideoandthresholding.

Results. Figure11 shaws the resultsof our mattedsyntheticaper
ture method Iming peoplethroughfoliage. By shapingthe aper
tureto reducecontritutionsfrom occludersmattedsyntheticaper
ture producesa more accuratadmageof the hiddensubjects.Mix-
turepixels preventthe occluderfrom beingeliminatedentirely, and
spaceswhereno rays get through are left black. We compared
the matteswe producedusing the imagevariancein time with a

“ground truth” mattewe constructedoy imaging white andblack
backgroundplacedbehindthe occluder We found little discern-
abledifferencein usingthetwo mattes.

Discussion.As we have seenin this section,customizingthe rays
thatcontrituteto a syntheticaperturamagecanleadto signi cant
improvements.Computingmattesbasedon the temporalvariance
of eachinput pixel works well for static occluders. We are in-
terestedin extendingour techniquego handlemoving occluders
using other matting techniques. Somepossibilitiesinclude mat-
ting basedn colorthresholdingor homogeneousccludersshape
from sterecoor focus,andactive range nding.

Sofarwe have shavn how to shapehe aperturan spacebput there
is noreasonwe couldnotshapeheaperturean bothtime andspace.
For example,if we could estimatehe motion of partially occluded
subjectswe could shapea space-timesyntheticaperturethat fol-
lows the object’s path. This apertureshouldgenerateanevenbetter
image whereinformationpresenin someviews couldbe addedo
views whereit is missing. This sectionshaved oneway to cus-
tomizean aperturefor a speci ¢ problem. In the next section,we
extendthis ideato shapinganaperturan bothtime andspace.

6.2 Hybrid Aperture Photography

Traditional camerashave two meansof collectingmorelight: in-
creasinghe exposuretime andincreasinghe lensaperturediame-
ter. Both have sideeffects. Increasinghe exposuretime increases
motionblur for fast-mwing objects,andincreasingheapertureli-
ameterresultsin a smallerdepthof eld. Thus,to photographa
fast-mwing objectembeddedn a wide depthof eld, stationary
or slowly moving scene onewould preferto usea small aperture
diameterandshortexposuretimes. If the scends notbrightly illu-
minated this canresultin dark,noisyimages.

As notedearlier our arrayis not limited to cylindrical space-time
aperturefunctions. We can partition our array into subarrays,
therebysimultaneouslycapturingimagesof a sceneusing multi-
ple differentaperturesBy combiningtheimagescapturedhrough
thesedifferentaperturesye effectively createa “hybrid” aperture,
allowing usto properlyphotograptthesescenesAs anexampleof
thisidea,in gure 12,we considerthe problemof photographing
spinningfanin the middle of a deeproom. To createa hybrid aper
ture specializedor this scenewe simultaneouslymagethe scene
throughthethreefollowing apertures:
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Figure1l: Mattedsyntheticaperturephotograph. (a) A sampleimagefrom oneof 90 camerasusedfor this experiment.(b) The synthetic
aperturémagefocusedon the planeof the people computedoy aligningandaveragingimagesfrom all 90 camerassdescribedn thetext.
(c) Suppressingontritutionsfrom staticpixelsin eachcamerayields a morevivid view of the scenebehindthe occluder The personand

stuffed toy aremoreclearlyvisible.

A spatially narrav, temporallywide aperture,s. The entire
scenewill bein focus, but will have motion blur for fast-
moving objects. The imagethrougha single camerawith a
small aperturdensandlong exposureimplementsthis aper
ture.

A spatiallywide, temporallynarrav aperturet, focusedon
the subject. The narrav temporalapertureeliminatesmotion
blur, but thelarge spatialapertureneansverythingnot atthe
subjects depthwill be out of focus. We capturethis using
a syntheticaperturephotograptakenby camerason gured
with shortexposuretimes.

A spatiallyandtemporallywide aperturew. Thisimagewill
have both defocusblur dueto limited depthof eld andmo-
tion blur for the subject. We acquirethis using a synthetic
aperturephotographakenby aninterleared arrayof cameras
with long exposuretimes.

Figurel2 shavstheimageds, lt, andly capturedhroughtheaper

turess, t, andw. Eachof theseaperturesollectsmuchmorelight

thanwould becollectedby acamerawith aspatiallyandtemporally
smallaperture Obsenre thatls hasmotionblur for thefast-maing

subject(thefan),l; hasdefocusblur for everythingnotatthe depth
of thesubjectandl,, hasboth. Because,, is focusedatthesubject,
the motionblur of the subjectis in focusandthereforeidenticalto

themotionblurin Is. Similarly, becausehe two syntheticaperture
photographsrefocusedat the samedepth,the defocusblur for the

restof the scenes equivalentin bothimages. Therefore ,we can
computeour desiredmagefrom s + |; - |y, afternormalizingeach
imagefor exposureasshowvnin (d).

The syntheticapertureimagesshav aliasingartifactsbecauseve
arepoint samplingthe spatiallywide aperturesln orderto capture
thetwo imagessimultaneouslywe assignedalf of the camerasn
our arrayto onesyntheticapertureandthe remainderto the other
settingasideonecamerdor thespatiallynarrav aperture We inter-
leavedthetwo setsof syntheticaperturecamerasn acheclerboard
patternon our planararray but the slight displacementbetween
views causedaslightchangesn thealiasingof thesyntheticaperture
images.Thedifferencesn the aliasingremainafter subtracting
from Iy andcauseartifacts.

Aliasing appearnly in the defocusedegionsof Iy andly. In the
nal image,we wish the defocusblur to cancel.If we knew where
thealiasesappearedn I; andly, we could matteout the defocused
regionsprior to composinghe nal image.We canconstructsuch

amattefrom adepthmapof thescene.

To reconstrucanalias-freesyntheticaperturémage,we rst apply
anappropriateeconstructionlter to the sampleof w. This Iter
removes high-frequeng componentof the scenealong with the
aliases.We estimatethe depthof featureghatsurvive this Itering
by computingthe varianceacrosshe syntheticaperturesamplesat
eachpixel. If we assumeextured objectsin the scene,variance
will be high for objectsnot at the focal depth. We obtaina matte
by thresholdingthis varianceimage. In practice,mary objectsdo
nothave high frequeng textures,but low frequeng texturesdo not
createaliasessothetechniques robustfor our purposes.

Figure 12 (e) is the resultof mattingl; andl,, beforecomputing
Is+ It lw. Thealiasingartifactsaregone,andwe have achiesed
both high depthof eld for the sceneandlow motion blur for the
fan. Thelastpicture (f) is theimagetaken throughan apertureof
narrov spatialandtemporalextent (i.e. one camerawith a short
exposuretime). Themotionof thefanis frozenandthe statueis in
focus,but theresultis muchnoisierthanthehybrid aperturémage.

It is interestingto compareour approachto that of Stevart et al.
[2003], which proposesa hybrid reconstructionlter for light eld

renderingin orderto reduce‘ghosting” artifacts. Their lter com-
binesa wide spatialapertureto capturesubjectdetail with a nar
row spatialapertureto capturescenedepthandview-dependente-
ectance.Likethem,we useahybrid reconstructioniter , i.e. com-
posedof several Iters of differentshape.Moreover, both hybrids
includeadiagonal lter in uvg—equialentto assumingbjectsare
at a x ed depth. However, the two approachedliffer in several
ways. Becausewe considerdynamicscenespur hybrid includes
time, while theirsdoesnot. As aresult,we mustconsidersignal-to-
noiseissueswhich do not arisefor the staticsceneshey consider
Secondlyand more importantly Stavart et al. apply both Iters

to the samelight eld. We insteadsamplethelight eld multiple
times, with a differentsamplingstrateyy for each lter. Finally,

theirhybrid Iter islinear, whereaursis nonlineardueto thepre-
viously explainedcompositingstep.

7 Discussion and Conclusion

We setoutin 1999to createa systemthatwould allow usto exper
imentwith theimagingcapabilityof alarge numberof inexpensve
cameras.The resultingcameraarray while far from perfect,has
accomplishedhis goal. Its key designfeatures—smaltamerailes
with e xible mounting,accuratdiming controlof theimagersand
local processingand compressiomwith eachimagerhave enabled
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Figure12: Hybrid syntheticaperturegphotograpk for combininghigh depthof eld andlow motionblur. (a-c) Imagescapturedof a scene
simultaneouslyhroughthreedifferentaperturesasinglecamerawith along exposuretime (a), alarge syntheticaperturewith shortexposure
time (b), anda large syntheticaperturewith along exposuretime. Computing(a+b-c)yieldsimage(d), which hasaliasingartifactsbecause
the syntheticaperturesare sampledsparselyfrom slightly differentlocations. Maskingpixels not in focusin the syntheticaperturemages
beforecomputingthe difference(a + b - ¢) removesthealiasing(e). For comparisonimage(f) shavs theimagetakenwith anaperturethat

is narrav in bothspaceandtime. Theentirescends in focusandthefanmotionis frozen,but theimageis muchnoisier

awide variety of imagingtasks.The high samplingdensitycanbe
usedto approximatecamerasvith extraordinaryfeaturessvenwith
the inexpensve imagersthatwe used. Abutting the views leadsto
high-resolutionvideo mosaics,overlappingviews can be usedto
raisethe effective dynamicrangeor framerate,andcamerasanbe
allocatedto accomplishall threesimultaneously

Althoughmary of thetechniquesve have presented¢anbeapplied
to high-quality camerago extendtheir performancesven further,

we are particularly interestedin exploring the limits of imaging
with large arraysof cheapcameras Oneopenquestionis whether
usingmary camerasand clever processingve can overcomethe
poorerimaging characteristicef inexpensve camerasandoutper

form a single high-quality camera.For example,the resolutionof

our high-resolutiorvideocapturesystemncreasesinearly with the
numberof camerashut fabricationyieldsfor high-resolutioimage
sensorglecreasexponentiallywith increasingpixel resolution,so
the arrayapproactseemssuperior On the otherhand,our system
would make apoorcamerdor astronomywhichdemandserylow

noise,becauseoisedecreasesnly logarithmically with the num-
berof camerasTheselines of reasoningndicatethathigh-quality
camerasnightbesuperiornn generalput arrayscanperformbetter
in somecases.

Asidefromincreasingmagingperformancegur systencanalsobe
usedto createimagesthat could not have beencapturedusingary
normalcameraSomeof theseapplicationsusecameraspreadur-
therapart,creatinga wide syntheticaperture A key issuewith this
wider baselinds how to allocatethe cameraslongthetwo spatial
andonetemporaldimensionsWe shaw thatfor scenesvith closely
spaceccamerasr fastmotion, triggeringall of the camerasatthe
sametime is a poor samplingstratgy. Instead,one cansample

the (x;y;t) view volume more uniformly by distributing the ring
timesof the camerascrosshe frametime. We take advantageof
theresultingreducedmagemotionwith anoptical o w variantthat
explicitly accountdor parallaxmotionandobjectmotion. This al-
lows usto interpolatemissingpointsin the spatiotemporafolume,
creatingvirtual cameraviews from new positionsin spaceandtime.
Thesetechniquesanbe usedto createMatrix-style “bullet time”
effectsin post-processing.

Basedon our experienceswith non-linearand hybrid synthetic
apertureswe believe themostinterestingapplicationf largecam-
eraarray are thosethat do not try to approximatea corventional
cameraln particular we have shawvn thatby shapingthe synthetic
aperturdo avoid raysthatdo nothit thedesiredsubjector by creat-
ing non-g/lindrical shapesn space-timecameraarraysallow one
to createimagesthat have not beenpossiblebefore. We have ex-

plored only a fraction of the possibleapplications,and eachone
raisegquestionghatsuggeshew opportunities.

Looking to the future, we would like to designa next-generation
cameraarray One straightforvard improvementto our system
would be addingmore processingo the cameras Our FPGAsare
operatingnearlyat capacitydoingrelatively simpleimageprocess-
ing tasks.In a future design,we would alsonot useimagesensors
with electronicrolling shutters.Therolling shutteris analogougo
amechanicasklit shutterthatscansacrossheimage,causingrows
at the bottom of the imageto exposeatfter rows at the top. This
samplingpatternis inconvenientfor mary applications.

For real-time applications,a future systemshould supportmore
e xible communicatioraswell asincreasegrocessingower. Cur
rently, all of the video from our cameraso ws directly to the host



PCs. Live syntheticaperturevideo, which we demonstratenly
for a modestnumberof cameraswould be easierif eachcamera
couldreducehevideoit receved,addingimagesrom downstream
camerado its own warpedinput beforetransmittingit to upstream
camerasWe couldaddthis functionalityto thecurrentarchitecture
by using multiple IEEE1394interfacesin eachcamerato support
point-to-pointcommunicatiorbetweendevices, but otherapplica-
tions might have more complex communicatiomeeds. Thus, be-
fore designinga new architecturewe shouldinvestigate potential
real-timearrayapplicationsandhow they would mapto arraysof
“smart” cameras.

Finally, mary applicationswould bene t from incorporatingac-
tive technologiesnto this system.For example,we envision using
rangesensorsor projectorsfor active matting techniquesn syn-
thetic aperturephotograply. Calibrationin very unstructurecen-
vironmentsmight be aidedby lasersthatcould castgeometriccali-
brationtargetsinto our scenesProjectorsareparticularlyappealing
becausehey seempoisedto descendhe sameslopeof falling cost
that CMOS sensoraresliding dovn now. Many of the challenges
working with large arraysof projectorsare the sameasthosefor
camerasbandwidth,control,and e xibility. As technologiedike
projectoraandrangesensorbecomeanoreaffordableandprevalent,
we foreseecreatinglarge, hybrid cameraarraysthat not only pas-
sively obsere, but also actively interactwith their ervironments.
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