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Figure1: Differentcon�gurationsof our cameraarray. (a) Tightly packed cameraswith telephotolensesandsplayed�elds of view. This
arrangementis usedfor high-resolutionimaging(section4.1). (b) Tightly packedcameraswith wide-anglelenses,which areaimedto share
thesame�eld of view. We usethis arrangementfor high-speedvideocapture(section4.2)andfor hybrid apertureimaging(section6.2). (c)
Camerasin awidely spacedcon�guration.Also visiblearecabinetswith processingboardsfor eachcameraandthefour hostPCsneededto
run thesystem.

Abstract

The advent of inexpensive digital image sensorsand the ability
to createphotographsthatcombineinformationfrom a numberof
sensedimagesarechangingthe way we think aboutphotography.
In thispaper, wedescribeauniquearrayof 100customvideocam-
erasthat we have built, andwe summarizeour experiencesusing
this arrayin a rangeof imagingapplications.Our goalwasto ex-
plorethecapabilitiesof a systemthatwouldbeinexpensive to pro-
ducein the future. With this in mind, we usedsimple cameras,
lenses,andmountings,andweassumedthatprocessinglargenum-
bersof imageswould eventuallybe easyandcheap.The applica-
tionswehaveexploredincludeapproximatingaconventionalsingle
centerof projectionvideocamerawith highperformancealongone
or moreaxes,suchasresolution,dynamicrange,framerate,and/or
largeaperture,andusingmultiple camerasto approximatea video
camerawith a largesyntheticaperture.Thispermitsusto capturea
videolight �eld, to which we canapplyspatiotemporalview inter-
polationalgorithmsin orderto digitally simulatetime dilation and
cameramotion. It alsopermitsus to createvideosequencesusing
customnon-uniformsyntheticapertures.
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1 Intro duction

Oneof theeconomictenetsof thesemiconductorindustryis prod-
uctsthatsell in largevolumesarecheap,while productsthatsell in
lowervolumesaremoreexpensive,almostindependentof thecom-
plexity of the part. For computers,this relationshiphaschanged
theway peoplethink aboutbuilding high-endsystems;ratherthan
building a customhigh-endprocessor, it is morecosteffective to
usea largenumberof commodityprocessors.

We arenow seeingsimilar trendsin digital imaging. As the pop-
ularity of digital camerasgrows, the performanceof low-endim-
agerscontinuesto improve,while thecostof thehigh-endcameras
remainsrelatively constant. In addition, researchershave shown
that multiple imagesof a static scenecan be usedto expandthe
performanceenvelopeof thesecameras.Examplesincludecreat-
ing imageswith increasedresolution[Szeliski 1994] or dynamic
range[S.MannandR.W.Picard1994;DebevecandMalik 1997]. In
otherwork, SchechnerandNayarusedspatiallyvarying �lters on
arotatingcamerato createhigh-resolutionpanoramasthatalsohad
highdynamicrangeor highspectralresolution[SchechnerandNa-
yar 2001]. Anotherusefor multiple views is view interpolationto
createthe illusion of a smoothlymoving virtual camerain a static



or dynamicscene[Levoy andHanrahan1996;Gortleret al. 1996;
Randeretal. 1997;Matusiketal. 2000].

Most of theseefforts employ a single moving high-quality cam-
eraviewing a staticscene.To achieve similar resultson dynamic
scenes,multiple camerasarerequired. This motivatedus in 1999
to think aboutdesigninga �e xible arraycontaininga large num-
ber of inexpensive video imagers.The multiple cameraarraythat
resultedconsistsof 100videocameras,eachconnectedto its own
processingboard.Theprocessingboardsarecapableof local image
computation,aswell asMPEG2compression.

In section2, we review prior work in building multiple videocam-
erasystems.While thesesystemsaregenerallydirectedat speci�c
applications,they provide valuableinsightsinto the requirements
for a �e xible capturesystem.Section3 givesan overview of our
multiple cameraarrayandexplainsin a little moredepththe fea-
turesweaddedto make it ageneralpurposeresearchtool.

Therestof this paperfocuseson our recentresultsusingthecam-
eraarrayin different imagingapplications.We startby exploring
waysof usingmultiplecamerasto createanaggregatevirtual cam-
erawhoseperformanceexceedsthecapabilityof anindividualcam-
era. Sincetheseapplicationsintendto approximatea camerawith
a single centerof projection, they generallyusedenselypacked
cameras. In particular, section4 exploresthe creationof a very
high-resolutionvideocamerain which thecamerasareadjustedto
havemodestlyoverlapping�elds of view. Wethenaimthecameras
inward until their �elds of view overlap completely, and we use
our system's �ne timing control to provide a virtual videocamera
with averyhigh frame-rate.In bothof theseapplications,thelarge
numberof camerasprovide someopportunity that would not be
presentin a singlecamerasystem.For the virtual high-resolution
imager, onecanperformexposuremeteringindividually on each
camera,which for sceneswith spatiallyvarying brightnessallows
usto form a mosaicwith highdynamicrange.For thevirtual high-
speedimager, onecanintegrateeachframefor longerthanoneover
the frame-rate,therebycapturingmore light per unit time than is
possibleusingasinglehigh-speedcamera.

Sections5 and 6 considerapplicationsin which the camerasare
spreadout, therebycreatingamulti-perspectivevideocamera.One
importantapplicationfor this kind of data is view interpolation,
whosegoalis to movethevirtual observersmoothlyamongthecap-
turedviewpoints.For videolight�elds, theproblembecomesoneof
spatiotemporalinterpolation.Section5 showsthattheoptimalsam-
pling patternto solvethisproblemusescameraswith staggered,not
coincident,trigger times. It alsodescribesa spatiotemporalinter-
polationmethodthatusesa novel optical �o w variantto smoothly
interpolatedatafrom thearrayin bothtime andvirtual camerapo-
sition.

In section6 weconsidercombiningtheimagesfrom multipleview-
points to createsyntheticapertureimagesequences.If we align,
shift, andaverageall the cameraimages,thenwe approximatea
camerawith a very largeaperture.By changingtheamountof the
shift, we canfocusthis syntheticcameraat differentdepths. Us-
ing theprocessingpower on eachcameraboard,we canfocusthe
syntheticaperturecamerain real time, i.e. during video capture.
Alternatively, we canshapethe apertureto matchparticularchar-
acteristicsof the scene.For example,we freezea high-speedfan
embeddedin a naturalsceneby shapingthe aperturein both time
andspace.

2 Early Camera Arrays

The earliestsystemsfor capturingscenesfrom multiple perspec-
tivesuseda singletranslatingcamera[Levoy andHanrahan1996]
andwerelimited to staticscenes.DaytonTaylorextendedthis idea
to a dynamicsceneby usinga lineararrayof still cameras[Taylor
1996].By triggeringthecamerassimultaneouslyandhoppingfrom
onecameraimageto thenext, hecreatedtheillusion of virtual cam-
eramovementthrougha“frozen” dynamicscene.Manex Entertain-
ment usedmore widely spacedcamerasand addedan adjustable
triggerdelaybetweencamerasto captureimagescorrespondingto
a virtual high-speedcamera�ying aroundtheir scenes. Both of
thesesystemsusedstill cameras,sothey werelimited to capturing
onespeci�c virtual cameratrajectorythroughspaceandtime that
was�x edby thecameraarrangement.

For capturinga moregeneraldataset,researchersturnedto arrays
of videocameras.Like still cameras,videocamerasmustbesyn-
chronized,but they alsopresenta new challenge:enormousdata
rates. The pioneeringmultiple video cameraarray designis the
VirtualizedRealityTMproject[Randeret al. 1997]. Their goalwas
to capturemany viewsof ascenefor videoview interpolation.The
�rst versionof theirsystemrecordsvideousingVCRs,giving them
practicallyunlimitedrecordingdurationsbut low quality. Theirsec-
ondversionuses49 videocamerascapturingto PCmainmemory.
This systemhasbetterquality (VGA resolutionat 30 framesper
second),but is limited tonine-secondcapturedurations.Everythird
cameracapturescolor video.To handlethebandwidthof thevideo
cameras,they requireonePCfor every threecameras.

While theVirtualizedRealityTMprojectusesrelatively highquality
cameras,two othergroupsexperimentedwith largearraysof inex-
pensive cameras.Yanget al.'s DistributedLight Field Cameraren-
derslive dynamiclight �elds from an8x8 arrayof commoditywe-
bcams[Yanget al. 2002]. ZhangandChen's Self-Recon�gurable
CameraArray uses48commodityEthernetcameraswith electronic
horizontaltranslationandpancontrolsto improve view interpola-
tion results[ZhangandChen2004a;ZhangandChen2004b].Al-
thoughthedesignof thesesystemsmake themmuchcheaperthan
VirtualizedRealityTM in termsof percameracosts,signi�cant com-
promisesweremadeto usethesecommoditycameras.First,neither
of the arrayscould be synchronized,causingartifactsin the view
reconstructions.Furthermore,sincethey werelookingatsingleap-
plications,neithersystemaddressedthe bandwidthchallengesof
building a generalpurposelargecameraarray. Yanget al. choseto
implementa “�nite-vie w” system,meaningeachcameratransmits
only enoughdatato reconstructasmallnumberof light �eld views
perframetime. ZhangandChen'scamerasuseJPEGcompression,
but their choiceof Ethernetanda singlecomputerto run thearray
limits themto a resolutionof 320x240pixels at 15-20framesper
second.

Resultsfrom theseefforts helpedguideour systemdesign. Since
our goal wasto createa generalpurposesystem,we wantedtight
controloverboththetiming of camerasandtheirpositions.Wealso
neededto beableto recordthedatafrom all thecameras,but with
far fewer PCsthanthe VirtualizedRealityTMsystem. The system
thatwedesignedto addressthesegoalsis describednext.

3 The Multiple Camera Array

While wehadwantedto use“off-the-shelf” technologyto build our
cameraarray, it becameclearearlyon thatnoneof thecommercial
video cameraswould have both the timing andpositioning�e xi-
bility that our systemrequired. As a result, we decidedto build



Figure2: OurcameratilescontainanOmnivision8610imagesen-
sor, passive electronics,anda lensmount.Theribboncablescarry
videodata,synchronizationsignals,controlsignals,andpower be-
tweenthetile andtheprocessingboard.To keepcostslow, we use
�x ed-focus,�x ed-aperturelenses.

a customimaging array, but one in which we leveragedexisting
standardsasmuchaspossibleto minimize the amountof custom
hardwarethatthesystemrequiredfor operation.A descriptionof a
preliminaryversionof this systemwaspublishedin Wilburn et al.
[2002].

3.1 Hardware Components

Our systemconsistsof threemainsubsystems:cameras,local pro-
cessingboards,andhostPCs. Thecamerasaremountedon small
printed circuit boardsto give us maximum�e xibility in their ar-
rangement. Eachcameratile is connectedto a local processing
boardthrougha 2m long ribbon cable. Theseprocessingboards
con�gure eachof the camerasandcan locally processthe image
databeforesendingit out to the host computerin either its raw
form or asanMPEG2videostream.A setof 4 PCshoststhesys-
tem, eitherstoring the collecteddatato disk, or processingit for
realtimedisplay.

CameraTiles. Oneof themostcritical decisionsfor thearraywas
the choiceof imagesensorsandtheir optical systems.While we
thoughtit wasreasonableto assumethat computationwould con-
tinue to get cheaper, we found it moredif�cult to make that same
argumentfor high-qualitylenses.Thus,we chooseto useinexpen-
sive lensesandopticsaswell asinexpensive sensors.In particular,
we choseCMOSimagesensorswith BayerMosaiccolor �lter ar-
rays[Bayer1976].Althoughthey havemoreimagenoisethanCCD
imagers,CMOS sensorsprovide a digital interfaceratherthanan
analogone, and they offer convenientdigital control over gains,
offsets,andexposuretimes.Thismakessystemintegrationeasier.

Figure2showsoneof ourcameratiles. For indoorapplications,one
typically wantsa largeworking volumeanda largedepthof �eld.
For thesereasons,we useSunex DSL841B lenseswith a 6.1mm
focal length, an F/# of 2.6, and relatively wide diagonal�eld of
view of 57� . For applicationsthat requirea narrow �eld of view
(usuallyoutdoors),we useMarshallElectronicsV-4350-2.5lenses
with a 50mm�x edfocal length,anF/# of 2.5,anda diagonal�eld
of view of 6 � . Bothsetsof opticsincludeanIR �lter .

The cameratiles measure30mmon a sideandmountto supports
usingthreespring-loadedscrews. Thesescrews not only hold the
camerasin placebut also let us changetheir orientationsroughly
20� in any direction. For tightly packedcameraarrangements,we
mountthetilesdirectlyto sheetsof acrylic. For morewidely spaced
arrangements,we have designedplasticadaptersthat connectthe
tiles to 80/20(anindustrialframingsystem)components.
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Figure3: Cameraprocessingboardblockdiagram

Figure4: Cameraprocessingboard

Local ProcessingBoards. Figure3 shows a block diagramof a
completecamerasystem,and�gure 4 shows theprocessingboard
for onecamera.The processingboardhas� ve major subsystems:
a micro-controllerand its memory, an MPEG2 compressor, an
IEEE1394interface,a clock interface,and an FPGA which acts
asmasterdatarouterandprogrammableimagecomputationunit.
By choosingestablishedstandards,mostof thesesubsystemscould
beimplementedwith existingoff theshelfchipsets.

We chosethe IEEE1394High PerformanceSerialBus [Anderson
1999] (also known as FireWire R and i-Link R ) as our interface
betweentheprocessingboardsandthePCs.It guaranteesa default
bandwidthof 40MB/sfor isochronoustransfers,i.e. datathatis sent
at a constantrate. This is perfectfor streamingvideo,andindeed
many digital videocamerasconnectto PCsvia IEEE1394.It is also
well suitedfor a modular, scalabledesignbecauseit allows up to
63devicesoneachbusandsupportsplugandplay. Anotherbene�t
of IEEE1394is thecablesbetweendevicescanbeup to 4.5mlong,
andanentirebuscanspanover250m.Thus,camerasbasedonsuch
a systemcouldbespacedvery widely apart,possiblyspanningthe
sideof abuilding.

Evenwith this high-speedinterface,anarrayof 100videocameras
(640x480pixel, 30fps, one byte per pixel, Bayer Mosaic) would
requireroughly25 physicalbusesto transferthe roughly1GB/sec
of raw data,anda comparablenumberof PCsto receive it. Rather
thanlimiting theimagesizeor framerate,we decidedto compress
thevideousingMPEG2beforesendingit to thehost. Thedefault
4Mb/sbitstreamproducedby our SONY encoderstranslatesinto a
compressionratio of 17.5:1for 640x480,30fpsvideo. To ensure
thatcompressiondoesnot introduceartifactsinto our applications,
we designedthe camerasto simultaneouslystoreup to 20 frames
of raw video to local memorywhile streamingcompressedvideo.
This letsuscompareMPEG2compressedvideowith raw videoas
anof�ine sanitycheck.
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An embeddedmicroprocessormanagesthecomponentsin thecam-
era and communicateswith the host PCs over IEEE1394. The
FPGA is usedto route the imagedatato the correctdestination,
usually either the IEEE1394chipsetor the MPEG2 compression
chip. It canalsobecon�guredto operatedirectlyontheimagedata
usingits localDRAM for storingtemporariesandconstantsandthe
SRAM asaframebuffer. Codein asmallbootROM con�guresthe
IEEE1394interfacesothathostPCscandownloada moresophis-
ticatedexecutableandcon�gurationcodeto theboard.

3.2 System Architecture

Figure5 shows thehigh-level architectureof our system.Eachof
our camerasis a separateIEEE1394device with threeports. The
camerasareconnectedin a tree,with oneport connectingto a par-
ent andoneor two ports leadingto child nodes. The parentport
of theroot nodeis connectedto thehostcomputer, which hastwo
stripedIDE harddrivesto capturetheimagedata.For largearrays,
wemustusemultiplePC'sandIEEE1394buses.Theoretically, the
40MB/s streamingbandwidthof IEEE1394shouldaccommodate
62compressedvideostreams,but implementationdetails(busarbi-
trationandour inability to getcycle-accuratecontrolover thebus)
limits usto 30camerasperbus.Werunanetworkedcameracontrol
applicationthat letsusdrive theoperationof theentirearrayfrom
onePC.

The timing requirementsfor the arraywerestricter thancould be
achievedusingIEEE1394communication,especiallywith multiple
PCs.To achieve thedesiredtiming tolerance,we routea common
clock and trigger signalsto the entirearrayusingan extra setof
CAT5 cables.ThesecablesroughlymatchtheIEEE1394topology,
exceptthey form a singletreeevenif multiple IEEE1394busesare
used. A single“master” root boardin the arraygeneratesits own
27MHz clock andsendsit to two childrenvia CAT5 cables,which
thenbuffer theclock andsendit to two morechildren,andsoon.
Themasteralsogeneratesa triggerwhich is bufferedandrepeated
to all otherboards.This triggeris usedto synchronizethecameras
andprovidesa timing signalwith no morethan200nsof skew be-
tweenany two processingboards.To put this in perspective,200ns
is onethousandthof ourminimumintegrationtimeof 205ms.

Most systemswould usethetrigger to synchronizeall of thecam-
eras.In facttheearlyprototypeof oursystem[Wilburnetal. 2002]
usedit for this purposeaswell. The�nal systemprovidesanarbi-
trary, constanttemporalphaseshift for eachcamera.Becausethe
timing signalsfor the imagesensorsaregeneratedby the FPGAs,
this was doneby addingprogrammabletimer resetvaluesto the
FPGAcode.Thus,usingjust onetriggersignal,we canresetall of
thecamerasto arbitraryphaseoffsets.

3.3 Results

Our multiple cameraarraycapturesVGA video at 30 framesper
second(fps) from 100camerasto four PCs.Thedefault MPEGbit
rate is 4Mb/s, but we are free to alter the bit rateor even stream
I-frameonly video.At 4Mb/s,we cancapturesequencesup to two
anda half minuteslong beforewe reachthe2GB �le sizelimit of
ouroperatingsystem.Wehavenotyetneededto extendthis limit.

4 Improved Imaging Performance

By combiningdata from an array of cameras,we can createan
aggregatevirtual camerawith greatlyimproved performance.Al-
thoughonecoulddesignopticalsystemsthatensureacommoncen-
terof projectionfor all of thecameras,thesesystemsbecomecostly
andcomplex asthenumberof camerasgrows. Instead,wepackthe
camerasascloselyaspossibleto approximateasinglecenterof pro-
jectionandcompensatefor parallaxin software. Here,we discuss
two high-performanceapplications:high-resolution,high-dynamic
rangevideocapture;andhigh-speedvideocapture.

4.1 High-Dynamic Range and High-Resolution
Video

If we tightly packour camerasandaim themwith abutting or par-
tially overlapping�elds of view, we createa high-resolutionvideo
camera.Usingthis con�gurationandexisting techniquesfrom the
imagemosaicingliterature,we canregisterandblendthe images
to createa singleimageof high resolution. Oneadvantageof us-
ing many camerasfor this taskis thatwe canmeterthemindividu-
ally. Thisallows usto capturesceneswith a greaterdynamicrange
thanourcamerascanrecordindividually, providedthatthedynamic
rangein eachcamera's narrow �eld of view is small enough.For
scenesin whicheventhelocaldynamicrangeexceedsoursensors'
capabilities,we cantraderesolutionfor dynamicrangeby increas-
ing theoverlapof thecameras'�elds of view, sothateachviewing
ray is observed by multiple cameraswith different exposureset-
tings.

To demonstratethis idea,wearrangedourcamerasin adense12x8
arraywith approximately50%overlapping�elds of view, shown in
�gure 1(a). Eachcamerahasa telephotolenswith a roughly six
degreediagonal�eld of view. With 50%overlapbetweenadjacent
cameras,mostpointsin thesceneareobservedby fourcameras,and
theentirearrayhasa total �eld of view of 30 degreeshorizontally
and15degreesvertically.

Color Calibration. Becausethe inexpensive sensorsin our array
have varying color responses,we must color matchthem to pre-
vent artifactsin the imagemosaic. Color calibrationis important
in any applicationinvolving multiple cameras,but it is critical in
this application,sincedifferentpartsof the imagearerecordedby
differentcameras.We mustalsodeterminetheresponsecurvesof
our camerasif we wish to createhighdynamicrangeimages.With
gammacorrectionturnedoff in thecameras,theresponsecurvesof
our sensorsarereasonablylinear exceptat the low andhigh ends
of their outputrange.We have devisedanautomaticcolor match-
ing routinethat forcesthis linearresponseto beidenticalfor all of
thecamerasandcolor channelsby iteratively adjustingtheoffsets
andgainsfor eachcolor channelin every camera.Our goal is to
ensureuniformity, not absoluteaccuracy–our �nal mosaicscanbe
convertedto anothercolor spacewith onelasttransformation.



Eachiteration of our calibrationroutine takes imagesof a white
targetunderseveraldifferentexposurelevels. The target is placed
closeenoughto the array to �ll the �eld of view of all cameras.
Theexposuresettingis theactualdurationfor which thesensorin-
tegrateslight andis veryaccurate.Theroutinecalculatestheslopes
andoffsetsof thesensorresponses,thencomputesnew settingsto
matcha target response.We choosea line mappingtheminimum
responseto 20 and the maximumto 220, safely inside the linear
rangeof our sensors.Doing this for eachchannelusingimagesof
a white targetalsowhite balancesour sensors.Theentireprocess
takeslessthanoneminute.

Assembling HDR Image Mosaics. We use Autostitch [Brown
and Lowe 2003]) to createour imagemosaics. Autostitch uses
a scale-invariant featuredetectorto detectcorrespondingfeatures
in overlappingimages,bundleadjustmentto estimateglobally op-
timal homographiesto align all of the images,and a multi-band
blendingalgorithmto combinethe registeredimagesinto a single
mosaic. The camerasneednot be preciselyaimed,becauseAu-
tostitch�nds appropriatehomographiesto performseamlessimage
stitching.Giventhe34mmseparationof ourcamerasandourscene,
roughly120maway, wecantolerate+/- 20mof depthvariationwith
lessthat0.5pixelsof disparityin themosaicedimage.

For our application,we have modi�ed Autostitch in two ways.
First, we useour responsecurvesand the cameras'exposuredu-
rationsto transformpixel valuesfrom the camerasinto a �oating
point, relative irradiancevaluebeforeblending. Thus, the output
of theblendingis a �oating point image.Our secondmodi�cation
is replacingtheweightsfor themulti-bandblendwith acon�dence
measurethat is high for pixel valuesin the middle of the sensor
responseandlow for saturatedor underexposedpixels, aswell as
beinglow for pixelsat theedgesof eachcamera.

Results. Figure6 shows a comparisonof 3800x 2000pixel mo-
saicscapturedwith uniform and individually selectedcameraex-
posuretimes.Theuniform exposurelosesdetailsin thebrightly lit
hills anddark foregroundtrees.Theindividually meteredcameras
captureawiderrangeof intensities,but they still havesaturatedand
under-exposedpixels wheretheir dynamicrangeis exceeded.An
evenbetterpicturecanbeacquiredby takingadvantageof thecam-
eras'overlapping�elds of view to imageeachpoint with different
exposuredurations. Figure 7 (a) shows a mosaiccapturedusing
cameraswith oneof four exposuretimes(0.20ms,0.62ms,1.4ms,
and3.07ms).Theincreasedlocaldynamicrangecanbeseenin the
coveredwalkway in theinset(c).

Toevaluatetheoverall imagequality, wetookapictureusinga3504
x 2336pixel Canon20D con�gured with nearlythe same�eld of
view and comparedit to one frame of our high-resolutionvideo
(�gure 7(b)). The resultsareencouraging.While the insetsshow
thattheCanonimageis superior, theeffective resolutiondifference
is modest. Plotting pixel intensitiesacrossedgesin the two im-
agesshowedthattheCanon's resolutionis roughly1.5timesbetter.
Sincewe could easilyaddcameras,or reduceoverlapto increase
resolution,this degradedresolutionis not a seriouslimitation. In
fact,resolutionchartmeasurementswith our camerasindicatethat
their effective resolutionis about400pixelshorizontally, not 640,
sotheresolutionof themosaicis notmuchworsethanwhatwesee
from asinglecamera.

What is moresurprisingis that the contrastof our imagemosaic
is noticeablyworsethantheD20. This is dueto light leakageand
aberrationsin the lenses.Overall, theseresultsshow that it is pos-
sibleto uselargenumbersof inexpensivecamerasto build avirtual
cameraof both high dynamicrangeand high resolution. In this
examplewe uselarge overlapsso four camerasview eachpixel.
Ourarraycaneasilybecon�guredto reducetheoverlapandcreate

largermosaics.For example,reducingthecameraoverlapto 10%
would yield very large mosaics(roughly 6900x 3500pixels) us-
ing thesamenumberof cameras.(Rememberthat thesearevideo
cameras;weknow of nonon-classi�edvideocameraof comparable
resolution.)This �e xibility raisesthequestionof how to optimally
allocatecameraviews for imaging. This answerin turn depends
onthedynamicrangeof thesceneandthealgorithmusedfor adap-
tively settingtheexposuretimes.Wearestartingto look atadaptive
meteringalgorithmsfor cameraarraysto addressthis issue.

4.2 High-Speed Video

Thepreviousapplicationtakesadvantageof our �e xible mounting
systemandexposurecontrolto increasetheresolutionanddynamic
rangeof videocapture.Thetiming precisionof ourarrayoffersan-
otheropportunityfor creatinga high-performanceaggregatecam-
era: high-speedvideo capture. We have previously describeda
methodfor con�guring the array as a single, virtual, high-speed
videocameraby evenly staggeringthecameratriggertimesacross
the30Hzframetime[Wilburnetal. 2004].Using52tightly packed
camerasorientedwith wholly overlapping�elds of view, we simu-
lateda1560framepersecond(fps) videocamera.

Onebene�t of usingacameraarrayfor thisapplicationis thatframe
ratescaleslinearly with the numberof cameras.Also, compress-
ing the video in parallelat eachcamerareducesthe instantaneous
datarateandpermitsus to streamcontinuouslyto disk for several
minutes. By contrast,typical commercialhigh-speedcamerasare
limited to capturedurationsthat �t in local memory, often aslow
asa few seconds,andrequiresomemeansto synchronizethecap-
turewith thehigh-speedevent. Finally, unlike a singlecamera,the
exposuretime for eachframecanbegreaterthantheinverseof the
high-speedframerate.In otherwords,we canoverlapframetimes
amongthecameras.Thisallowsusto collectmorelight andreduce
noisein our imagesat the costof increasedmotion blur. By tem-
porally deconvolving the capturedvideo, we canrecover someof
the lost temporalresolution[Wilburn et al. 2004;Shechtmanet al.
2002].

As with the imagemosaicsbefore,we mustaccountfor theslight
parallaxbetweenviews from differentcameras.We assumea rel-
atively shallow or distantsceneand useplanarhomographiesto
align theimagesfrom all camerasto thedesiredobjectplane.This
leadsto artifactsfor objectsnot at theassumedscenedepth.In the
next section,weextendthishigh-speedmethodto thecaseof more
widely spacedcameras,andin section5.2we describea technique
for interpolatingbetweenthe views producedby the cameras.As
wewill see,this techniquecanalsobeusedto correctthemisalign-
mentsin ourhigh-speedvideo.

5 Spatiotemp oral Sampling

We now turn to a different regime for the array: camerasspaced
to samplea very wide spatialaperture.Datacapturedfrom such
arrangementscanbeusedfor syntheticaperturephotography, view
interpolation,andanalysisof scenestructureandmotion. We treat
syntheticaperturephotography in section6. For theothertwo ap-
plications,a major challengeis establishingcorrespondencesbe-
tweenpoints in different views. Generallyspeaking,algorithms
for computingcorrespondencesperformbetterwhenthemotionbe-
tweenviews is minimized. In this section,we show how to reduce
imagemotionbetweenviewsof dynamicscenesby staggeringcam-
era trigger times. Section5.2 describesa new view interpolation
algorithmbasedonoptical�o w.



(a) (b)

Figure 6: High Dynamic RangePanoramicVideo. By meteringcamerasindividually, we can increasethe total dynamicrangeof the
panoramicvideo.(a) In this image,all camerasaresetto thesameexposure.Noticethesaturatedareasin sunlightanddarkregionsin shade.
(b) For this mosaic,eachcamera's exposurewassetsuchthat theaveragepixel valueis in themiddleof thesensorrange,andtheresulting
high dynamicrangeimagewastonemappedfor display(andprinting). More detailsarerevealed,including theradardishandhills on the
horizonanddarkareasin theforegroundtrees.Theroof of thecoveredwalkway, however, wasoutsidetherangeof thecamerasthatviewed
it. Thegraycolor is dueto tonemapping–wedonotactuallyknow how bright theroof shouldbe.Thesky in thetop left of thepanoramawas
alsooverexposed.

(a) (b)

(c) (d)

Figure7: Comparisonwith a Canon20D. (a) Settingthe exposuretimesso eachpixel is viewed by four cameraswith varying exposure
durations(0.20ms,0.62ms,1.4ms,and3.07ms).This schemeincreasesthelocal dynamicrangeof themosaicrelative to �gure 6(a)or 6(b).
Theinset(b) showsthatwenow havevalid datafor thecoveredwalkway. Thecolorvariationsalongthebordersof thepanoramain (a) result
from viewing thoseportionsof thescenewith fewer thanfour differentexposures.This leadsto artifactsin areaswherewe have no valid
data.(c) An imageof thesamescenetakenwith a Canon20D,which hasa resolutionof 3504x 2336pixels. (d) is theinsetof thecovered
walkway from theCanon,for comparison.Our panoramahasasmuch(or more)dynamicrangeastheCanonimage.However, theCanon
imagesaresharperandhave morecontrastthat the panorama.The latter is dueto straylight andaberrationsin our relatively low-quality
lenses.



5.1 Planar Camera Arrays

To reasonquantitatively aboutview samplingin spaceandtime,we
will considera planarcameraarraywhoseimagesareall aligned
to a commonfronto-parallelreferenceplane. This arrangementis
usedfor light �eld renderingaswell asmany of theapplicationsin
this paper. More complicatedsurfacescanbe tessellatedto form
trianglesof camerasfor which this analysisalso applies. Given
this framework, we asktwo questions.First,whatis themaximum
possibleimagemotionbetweentwo views from differentpositions
andtimes?Second,how shouldwetrigger�x edframeratecameras
to minimizeimagemotion?

Figure8 shows how motion in the imageson the referenceplane
is relatedto the scenegeometryand velocities. We assumethe
scenehasnearandfardepthlimits with signeddistancesDznear and
Dzf ar from thereferenceplane,andthereferenceplaneis optimally
placedatadepthZ0 asdescribedbyChaietal. [2000]. Foracamera
spacingof Dx, theparallaxDp in thealignedimagesfor apointP at
adistanceDzp fromthereferenceplaneisDp= Dx�Dzp=(Dzp+ Z0).
If wede�ne the“relativedepth”d of thepointtobeDzp=(Dzp+ Z0),
this simpli�es to Dp = Dx�d.

The worst-caseparallaxoccursat the nearand far depthplanes.
The worst casetemporalmotion will occur if P is moving at the
maximumvelocity in the scene,v, on the near-depthplane,such
that the vectorPtPt+ 1 is orthogonalto the projectionray from C0
at time t + 1. If we assumea narrow �eld of view for our lenses,
we canapproximatethis with a vectorparallel to the focal plane,
shown asvDt. If P hasvelocity v, themaximumtemporalmotion
of its imagein C0 is vDtZ0=(Z0 + Dznear). Equatingthis motionto
themaximumparallaxfor P in aneighboringcamerayields

Dt =
DxDznear

vZ0
(1)

This is the time stepfor which maximumimagemotion between
views at the samecameraequalsthe maximumparallaxbetween
neighboringviews. If we representa view by two spatial(x;y) co-
ordinatesandonetime coordinatet, measuringtime in increments
of thetimestepDt andspacein unitsof cameraspacingsprovidesa
normalizedsetof axesto relatespace-timeviews. Becausemotion
due to parallaxand temporalmotion arenot orthogonal,the true
distancemeasureis the Euclideanspatialdistanceplus the tem-
poral distance. Minimizing this distancemeasurebetweenviews
minimizesthemaximumimagemotion.

This metricgivesusa methodto optimizeour distribution of sam-
plesin spaceandtime. Figure9 plotsthe(x;t) coordinatesof cap-
turedviewsfor alinearcameraarraywith differentvaluesof Dx and
Dt. Sincetheobjectmotionis oftennot known a priori, we wanta
samplingthatworksfor awidevarietyof motionvectors.In scenes
with little motion(�gure 9(a))thetemporalpatternmakeslittle dif-
ference,sincethemain imagemotion is from parallax. Whenob-
jectmotioncauseslargeimagechanges(�gure 9(b)),synchronized
timesamplesareoneof theworstsamplingpatterns,sinceit creates
denserows of sampleswith largeblankareas.In this case,thebest
timing for the camerasis onewherethe available time resolution
increaseswith increasingparallaxdistancefrom the main sample.
As shown in �gure 9(b), acrossan arrayof N cameras,every one
of theframe-time/N possiblestartingtimesis used.Notethatusing
thisoffsettiming patterndoesnothurt if scenevelocitiesaresmall,
becausethechangesin timemakelittle differencein theimagesthat
areformed.

PlaneReference

Dznear

p0 p1Dp

Z0

vDt
Pt Pt+ Dt

Dx

C1 C0

Figure8: Thetemporalandspatialview axesarerelatedby image
motion. For a givenscenecon�guration,we candeterminea time
stepDt for which the maximumimagemotion betweentemporal
samplesis equalto themaximumparallaxbetweenspatiallyneigh-
boring views. If we measuretime in incrementsof Dt andspace
in incrementsof the cameraspacing,thenthe Manhattandistance
betweenview coordinatescorrespondsto the maximumpossible
imagemotionbetweenviews.

(a) (b)

Figure9: Plotsshowing (x,t) view coordinatesfor differentamounts
of object motion, and different samplingpatterns. Both �gures
show a uniform time samplingin red andan optimal distribution
of samplesin blue. (a) For sceneswith large cameraspacingsor
very slow motion, time shifting of thecamerasmakeslittle differ-
ence.(b) For sceneswith smallcameraspacingsor highvelocities,
uniform samplingcreatesdenserows of samplesandleavesmost
of the areaunsampled.An optimizedsamplepatternstartseach
cameraat Q� i mod N, wherei is the index of the camera,N is
thenumberof cameras,andQ is chosento beroughly1/3 andalso
relatively primewith N.

5.2 Multibaseline Spatiotemp oral Optical Flow

Betterspatiotemporalsamplingwould improve even the simplest
view interpolationalgorithmslike blending,but thesamplingden-
sitiesrequiredfor ghost-freeimagesusingblendingareprohibitive.
Instead,we createda novel optical �o w variantfor generatingnew
views from a planarvideocameraarray. Our modi�ed spatiotem-
poral optical �o w algorithmhastwo novel features.Optical �o w
typically computes�o w betweentwo imagesby iteratively warping
onetowardstheother. Our �rst modi�cation is to solve for a �o w
�eld at the(x;y;t) locationof ourdesiredvirtual view. Wewerein-
spiredto compute�o w for thepixels in thenew imageby Kanget
al. [2003]. They notedthatfor avideosequence,computing�o w at
a framehalfway betweentwo imagesin a videosequencehandles
degenerate�o w casesbetterandavoidsthehole-�lling problemsof
forward-warpingwhencreatingnew views. We extendthemethod
to compute�o w at a desiredview in our normalized(x;y;t) view
space.We modi�ed therobustoptical �o w estimatorof Black and



Anandan[1993] usingcodeavailableon theauthor's website. We
iteratively warpthenearestfour capturedimagestowardthevirtual
view andminimize the weightedsumof pairwiserobust dataand
smoothnesserrorterms.

Motion cannotbemodelledconsistentlyfor four imagesatdifferent
spacetimelocationsusingjust horizontalandvertical image�o w.
The secondcomponentof our algorithmis separatelyaccounting
for parallaxandtemporalmotion.Thestandardintensityconstancy
equationfor optical�o w is:

I (i; j ; t) = I (i + uDt; j + vDt;t + Dt) (2)

Here, (i; j ; t) representthe pixel imagecoordinatesandtime, and
u andv are the horizontalandvertical motion at an imagepoint.
Ourmodi�ed intensityconstancy equationrepresentsconstancy be-
tweenthevirtual view anda nearbycapturedimageat someoffset
(Dx;Dy;Dt) in thespaceof sourceimages:

Ivirtual(i; j ;x;y;t) = Isource(i + uDt + dDx; j + vDt + dDy;t + Dt) (3)

The �o w componentsare separatedinto parallax motion, deter-
mined by a points's relative depthd and the spatialdistancebe-
tweenviews,andtemporalmotion,theproductof thetimebetween
views andtheprojection(u;v) of thetemporalmotionontotheim-
ageplane.

For eachvirtual view, we chooseinput views for the �o w algo-
rithm by computinga three-dimensionalDelaunaytriangulationof
thecamerasamplingpointsandselectingtheviews from thetetra-
hedronwhich enclosesthedesired(x;y;t) view. Theseimagesare
progressively warpedtoward the commonvirtual view at eachit-
erationof the algorithm. We cannottest the intensity constancy
equationfor eachwarpedimageagainst a virtual view. Instead,
weminimizetheerrorbetweenthefour warpedimagesthemselves
usingthe sumof the pairwiserobust intensityconstancy error es-
timators. This producesa single �o w map,which canbe usedto
warp the four sourceimagesto the virtual view. We currentlydo
not reasonaboutocclusionsandsimply blendthe warpedimages
usingtheirbarycentricweightsin thetetrahedron.

Results. For our experiments,we con�gured thecamerasin a 12-
by-8arraywith a threeinchcameraspacing.Wedeterminedexper-
imentally thatninestaggersacrossthe30Hz frametime would be
suf�cient for our scene,sowe createda 3x3 grid of triggersthat is
locally uniform andreplicatedit acrossthearray. Becauseour ap-
plication comparesneighboringimages,locally uniform sampling
is suf�cient. We calibratedour camerasto determinetheir rela-
tivedisplacementsin thecameraplaneusingtheplaneplusparallax
framework describedby Vaishetal. [2004].

Figure10 shows the resultsof improved spatiotemporalsampling
and our view interpolationalgorithm. For reference,we show a
cross-dissolve betweentwo subsequentframesfrom onecamerato
illustrate the temporalmotion betweenframes. Cross-dissolves,
or blending, are the simplestinterpolationmethodfor arraysof
camerassynchronizedto trigger simultaneously. Staggeringthe
cameratrigger timesto samplemoreuniformly in space-timeim-
proveseven this simpleinterpolationmethod.Figure10(b)shows
aweightedblendof four views from thesamearraywith staggered
trigger times. Theghostingis greatlyreduced.Finally, the image
on the right shows the resultsof our multibaselinespatiotemporal
optical�o w algorithm.Becausethecomputed�o w is consistentfor
the four views, whenthe sourceimagesarewarpedandblended,
theball appearssharp.

Discussion.Weusedimprovedsamplingto createa relatively sim-
ple interpolationmethodthatusesoptical �o w to accountfor both
parallaxmotionandtrueobjectmotion in thescene.This method

allows usto estimateany cameraimagethat is insidethetime and
spatialextent of the original cameraarea. If we hold the virtual
viewpointsteadyandsynthesizenew viewsateachtriggertime,we
producea registeredhigh-speedvideo.Wearefree,however, to al-
ter thevirtual view positionandtimearbitrarily (within thespanof
thearray),enablingbothtimedilationandvirtual cameramotion.

While our spatiotemporalworkswell in practice,it doesoccasion-
ally suffer from the usualartifactsof optical �o w, suchas large
dominantmotionsmaskingthemotionof smallerregionsandprob-
lemswhentheimagemotionis too large.Thusascameraspacings
increase,moresophisticatedmethodswill berequiredto interpolate
new views. Many methodsdevelopedto work with synchronized
camerasshouldbene�t from usingcameraswith moreoptimalsam-
ple timing. For example,segmentation-basedstereomethodshave
recentlybeenprovenveryusefulfor spatialview interpolation[Zit-
nick et al. 2004] andanalysisof structureandmotion in dynamic
scenes[Taoet al. 2001;ZhangandKambhamettu2001]. Because
thesemethodsmatchsmall imageregionsacrossviews,onewould
expectthemto bene�t from reducedimagemotionbetweennearby
space-timeviews.

Thehigh-resolutionvideocaptureapplicationdividedthetotalmo-
saicresolutionby four to increasethedynamicrange.By contrast,
staggeredcameratriggers increasetemporalsamplingresolution
with essentiallynocost.Thus,webelieve thatstaggeredtiming for
video camerasarraysis alwaysbene�cial. If scenevelocitiesare
small,thetemporaloffsetsareinconsequential.If thevelocitiesare
large, staggeredcamerascancaptureeventsthat would otherwise
gounnoticed,minimizing interpolationartifacts.

6 Synthetic Aperture Photography

Spatiotemporalview interpolationsimulatesanarrow moving aper-
ture in space-time.If insteadof interpolatingviews, we align the
imagestaken acrossthe apertureto a planeandaveragethemto-
gether, we approximatea camerawith a very largeaperture.Shift-
ing thealignedimagesvariesthefocaldepthfor thesystem[Levoy
andHanrahan1996;Isaksenet al. 2000;Vaishet al. 2004]. Warp-
ing themin additionto shifting thempermitsthe focal planeto be
tilted [Vaishet al. 2005]. In theseexperiments,we acceleratethe
computationby having theFPGAin eachcameraalignandshift the
videobeforeit is compressedandsentto thehostPCs.This gives
usareal-time(live)syntheticaperturevideography system.Specif-
ically, as the userinteractively adjuststhe object focal depth,the
hostPCsbroadcastthe requiredimageshifts to thecameras.Cur-
rently, theprocessingpower of our hostPCslimits us to 15 video
camerasperPC.

Theapertureof a traditionalcamerais acylinder in spaceandtime.
Theheightcorrespondsto theexposuretime andthecrosssection
is theshapeof thelensaperture.Syntheticaperturephotography in-
creasesthespatialextentof theapertureby samplingit with many
cameras.We now considertwo exotic apertureshapesmadepossi-
ble by our array. The �rst, mattedsyntheticaperturephotography,
tailorsanapertureto only captureraysthatseethroughapartialoc-
cluder. Thesecondcreatesahybrid space-timeaperturethatimages
with highdepthof �eld andlow motionblur in low-light conditions.

6.1 Non-linear Synthetic Aperture Photography

The syntheticaperturecameraeffect permitsoneto seea subject
hiddenbehindpartialoccludersby blurring theoccluderacrossthe
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Figure10: Betterspatiotemporalsamplingimprovesview interpolation. (a) A simplecrossdissolve betweentwo subsequentframesfrom
one30Hzcamera.(b) Synchronizingthecameraswith staggeredtrigger timesincreasesour view samplingdensityin spaceandtime. This
view, createdusinga weightedaverageof four input views, shows muchlessghosting. (c) Betterspatiotemporalview samplingreduces
imagemotionbetweenviews, makingoptical �o w morerobust. Here,we warpthefour sourceimagesto thedesiredvirtual view usingour
multibaselinespatiotemporaloptical �o w algorithm. The warpedimagesareblendedusingthe sameweightsas in the centerimage. No
doubleimagesarepresentbecauseparallaxandmotionfor theball arecorrectlyrecovered.

image.However, theoccluderis notrenderedinvisible,andthesyn-
theticaperturephotographattenuatesthesignalof interest,i.e. the
subject.SupposethatN camerasview thescenewith measurement
noisee. To createthesyntheticapertureimage,we align theviews
from all camerasto oneplaneandaveragethemtogether. If only K
camerasseethroughtheoccluderto any givenpointon thesubject,
then the signal in the syntheticapertureimageis attenuatedby a
factorof K=N, while themeasurementnoisefalls by 1=

p
N. Thus,

theSNRhasfallenby at leastK=
p

N relativeto theSNRof asingle
image.Sincetheoccluderdoesnot completelyaverageout, it will
addanadditionalnoisecomponent.

If we knew, for eachcamera,which pixelssaw throughthepartial
occluderto the subject,we could averageonly the contributions
from theunoccludedpixels.AveragingjusttheK unoccludedpixels
would increasesthe SNR of a single imageby

p
K anddoesnot

reducethecontrastof imageby attenuatingthesignal. In practice,
many pixels aremixture pixels, containinginformationfrom both
theforegroundandthebackground,sotheSNRimprovementwill
besmallerthan

p
K.

To implementthis,wecreateabinarymatteimagefor eachcamera.
Thematteis onefor pixelswhich arenot blockedby theoccluder
andzerootherwise.Althoughbinarymattesdiscardinformation,in
orderto usefractional(i.e. alpha)values,we mustalsorecover the
foregroundcolor. Thebinarymatteis a robust,conservative solu-
tion. To createthemattedsyntheticapertureimage,we divide the
sumof thealigned,mattedinput imagesby thesumof thealigned
mattesateachpixel.

Thereareseveral waysonemight imaginecreatingthe occlusion
mattes.Onethat we have implementedidenti�es all of the pixels
thatvarysigni�cantly overtimein videofrom eachcamera.Barring
motion of the occluderand interre�ectionsbetweenthe occluder
andthe subjectbehindit, thesepixels capturesometime-varying
portionof thesubjectandhencearenotoccluded.Weidentify these
pixelsby computingthevarianceof eachpixel overeachsecondof
inputvideoandthresholding.

Results. Figure11 shows theresultsof our mattedsyntheticaper-
ture method�lming peoplethroughfoliage. By shapingthe aper-
tureto reducecontributionsfrom occluders,mattedsyntheticaper-
tureproducesa moreaccurateimageof thehiddensubjects.Mix-
turepixelspreventtheoccluderfrom beingeliminatedentirely, and
spaceswhereno rays get throughare left black. We compared
the matteswe producedusing the imagevariancein time with a

“ground truth” mattewe constructedby imagingwhite andblack
backgroundsplacedbehindthe occluder. We found little discern-
abledifferencein usingthetwo mattes.

Discussion.As we have seenin this section,customizingtherays
thatcontributeto a syntheticapertureimagecanleadto signi�cant
improvements.Computingmattesbasedon the temporalvariance
of eachinput pixel works well for static occluders. We are in-
terestedin extendingour techniquesto handlemoving occluders
using other matting techniques. Somepossibilitiesinclude mat-
ting basedoncolor thresholdingfor homogeneousoccluders,shape
from stereoor focus,andactive range�nding.

Sofarwehaveshown how to shapetheaperturein space,but there
is noreasonwecouldnotshapetheaperturein bothtimeandspace.
For example,if we couldestimatethemotionof partially occluded
subjects,we could shapea space-timesyntheticaperturethat fol-
lows theobject'spath.Thisapertureshouldgenerateanevenbetter
image,whereinformationpresentin someviewscouldbeaddedto
views whereit is missing. This sectionshowed oneway to cus-
tomizeanaperturefor a speci�c problem. In thenext section,we
extendthis ideato shapinganaperturein bothtimeandspace.

6.2 Hybrid Aperture Photography

Traditionalcamerashave two meansof collectingmorelight: in-
creasingtheexposuretime andincreasingthelensaperturediame-
ter. Both have sideeffects. Increasingtheexposuretime increases
motionblur for fast-moving objects,andincreasingtheaperturedi-
ameterresultsin a smallerdepthof �eld. Thus, to photographa
fast-moving objectembeddedin a wide depthof �eld, stationary
or slowly moving scene,onewould preferto usea small aperture
diameterandshortexposuretimes.If thesceneis not brightly illu-
minated,this canresultin dark,noisyimages.

As notedearlier, our arrayis not limited to cylindrical space-time
aperturefunctions. We can partition our array into subarrays,
therebysimultaneouslycapturingimagesof a sceneusing multi-
ple differentapertures.By combiningtheimagescapturedthrough
thesedifferentapertures,we effectively createa “hybrid” aperture,
allowing usto properlyphotographthesescenes.As anexampleof
this idea,in �gure 12,we considertheproblemof photographinga
spinningfanin themiddleof adeeproom.To createahybrid aper-
turespecializedfor this scene,we simultaneouslyimagethescene
throughthethreefollowing apertures:
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Figure11: Mattedsyntheticaperturephotography. (a) A sampleimagefrom oneof 90 camerasusedfor this experiment.(b) Thesynthetic
apertureimagefocusedon theplaneof thepeople,computedby aligningandaveragingimagesfrom all 90 camerasasdescribedin thetext.
(c) Suppressingcontributionsfrom staticpixels in eachcamerayieldsa morevivid view of thescenebehindtheoccluder. Thepersonand
stuffed toy aremoreclearlyvisible.

� A spatiallynarrow, temporallywide aperture,s. The entire
scenewill be in focus, but will have motion blur for fast-
moving objects. The imagethrougha singlecamerawith a
small aperturelensandlong exposureimplementsthis aper-
ture.

� A spatiallywide, temporallynarrow aperture,t, focusedon
thesubject.Thenarrow temporalapertureeliminatesmotion
blur, but thelargespatialaperturemeanseverythingnotat the
subject's depthwill be out of focus. We capturethis using
a syntheticaperturephotographtakenby camerascon�gured
with shortexposuretimes.

� A spatiallyandtemporallywide aperture,w. This imagewill
have bothdefocusblur dueto limited depthof �eld andmo-
tion blur for the subject. We acquirethis using a synthetic
aperturephotographtakenby aninterleavedarrayof cameras
with longexposuretimes.

Figure12showstheimagesIs, It , andIw capturedthroughtheaper-
turess, t, andw. Eachof theseaperturescollectsmuchmorelight
thanwouldbecollectedby acamerawith aspatiallyandtemporally
smallaperture.Observe thatIs hasmotionblur for thefast-moving
subject(thefan),It hasdefocusblur for everythingnotat thedepth
of thesubject,andIw hasboth.BecauseIw is focusedat thesubject,
themotionblur of thesubjectis in focusandthereforeidenticalto
themotionblur in Is. Similarly, becausethetwo syntheticaperture
photographsarefocusedat thesamedepth,thedefocusblur for the
restof the sceneis equivalent in both images.Therefore,we can
computeourdesiredimagefrom Is + It - Iw, afternormalizingeach
imagefor exposure,asshown in (d).

The syntheticapertureimagesshow aliasingartifactsbecausewe
arepoint samplingthespatiallywide apertures.In orderto capture
thetwo imagessimultaneously, we assignedhalf of thecamerasin
our arrayto onesyntheticapertureandthe remainderto theother,
settingasideonecamerafor thespatiallynarrow aperture.Weinter-
leavedthetwo setsof syntheticaperturecamerasin acheckerboard
patternon our planararray, but the slight displacementsbetween
viewscausedslightchangesin thealiasingof thesyntheticaperture
images.Thedifferencesin thealiasingremainaftersubtractingIw
from It andcauseartifacts.

Aliasing appearsonly in thedefocusedregionsof It andIw. In the
�nal image,we wish thedefocusblur to cancel.If we knew where
thealiasesappearedin It andIw, we couldmatteout thedefocused
regionsprior to composingthe�nal image.We canconstructsuch
amattefrom adepthmapof thescene.

To reconstructanalias-freesyntheticapertureimage,we�rst apply
anappropriatereconstruction�lter to thesamplesof w. This �lter
removes high-frequency componentsof the scenealong with the
aliases.We estimatethedepthof featuresthatsurvive this �ltering
by computingthevarianceacrossthesyntheticaperturesamplesat
eachpixel. If we assumetextured objectsin the scene,variance
will be high for objectsnot at the focal depth. We obtaina matte
by thresholdingthis varianceimage. In practice,many objectsdo
nothavehigh frequency textures,but low frequency texturesdonot
createaliases,sothetechniqueis robustfor ourpurposes.

Figure12 (e) is the resultof matting It and Iw beforecomputing
Is + It � Iw. Thealiasingartifactsaregone,andwe have achieved
both high depthof �eld for the sceneandlow motion blur for the
fan. The last picture(f) is the imagetaken throughan apertureof
narrow spatialand temporalextent (i.e. onecamerawith a short
exposuretime). Themotionof thefanis frozenandthestatueis in
focus,but theresultis muchnoisierthanthehybrid apertureimage.

It is interestingto compareour approachto that of Stewart et al.
[2003],which proposesa hybrid reconstruction�lter for light �eld
renderingin orderto reduce“ghosting” artifacts.Their �lter com-
binesa wide spatialapertureto capturesubjectdetail with a nar-
row spatialapertureto capturescenedepthandview-dependentre-
�ectance.Likethem,weuseahybrid reconstruction�lter , i.e. com-
posedof several �lters of differentshape.Moreover, bothhybrids
includea diagonal�lter in uvst–equivalentto assumingobjectsare
at a �x ed depth. However, the two approachesdiffer in several
ways. Becausewe considerdynamicscenes,our hybrid includes
time,while theirsdoesnot. As aresult,wemustconsidersignal-to-
noiseissues,which do not arisefor thestaticscenesthey consider.
Secondlyand more importantly, Stewart et al. apply both �lters
to the samelight �eld. We insteadsamplethe light �eld multiple
times, with a different samplingstrategy for each�lter . Finally,
theirhybrid �lter is linear, whereasoursis nonlineardueto thepre-
viouslyexplainedcompositingstep.

7 Discussion and Conclusion

We setout in 1999to createa systemthatwouldallow usto exper-
imentwith theimagingcapabilityof a largenumberof inexpensive
cameras.The resultingcameraarray, while far from perfect,has
accomplishedthis goal. Its key designfeatures–smallcameratiles
with �e xible mounting,accuratetiming controlof theimagers,and
local processingandcompressionwith eachimager–have enabled
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Figure12: Hybrid syntheticaperturephotography for combininghigh depthof �eld andlow motionblur. (a-c) Imagescapturedof a scene
simultaneouslythroughthreedifferentapertures:asinglecamerawith a longexposuretime(a),a largesyntheticaperturewith shortexposure
time (b), anda largesyntheticaperturewith a long exposuretime. Computing(a+b-c)yieldsimage(d), which hasaliasingartifactsbecause
thesyntheticaperturesaresampledsparselyfrom slightly differentlocations.Maskingpixelsnot in focusin thesyntheticapertureimages
beforecomputingthedifference(a + b - c) removesthealiasing(e). For comparison,image(f) shows theimagetakenwith anaperturethat
is narrow in bothspaceandtime. Theentiresceneis in focusandthefanmotionis frozen,but theimageis muchnoisier.

a wide varietyof imagingtasks.Thehigh samplingdensitycanbe
usedto approximatecameraswith extraordinaryfeaturesevenwith
the inexpensive imagersthatwe used.Abutting theviews leadsto
high-resolutionvideo mosaics,overlappingviews can be usedto
raisetheeffectivedynamicrangeor framerate,andcamerascanbe
allocatedto accomplishall threesimultaneously.

Althoughmany of thetechniqueswehavepresentedcanbeapplied
to high-qualitycamerasto extendtheir performanceeven further,
we are particularly interestedin exploring the limits of imaging
with largearraysof cheapcameras.Oneopenquestionis whether
using many camerasand clever processingwe can overcomethe
poorerimagingcharacteristicsof inexpensive camerasandoutper-
form a singlehigh-qualitycamera.For example,the resolutionof
ourhigh-resolutionvideocapturesystemincreaseslinearlywith the
numberof cameras,but fabricationyieldsfor high-resolutionimage
sensorsdecreaseexponentiallywith increasingpixel resolution,so
thearrayapproachseemssuperior. On theotherhand,our system
wouldmakeapoorcamerafor astronomy, whichdemandsverylow
noise,becausenoisedecreasesonly logarithmicallywith thenum-
berof cameras.Theselinesof reasoningindicatethathigh-quality
camerasmightbesuperiorin general,but arrayscanperformbetter
in somecases.

Asidefrom increasingimagingperformance,oursystemcanalsobe
usedto createimagesthatcouldnot have beencapturedusingany
normalcamera.Someof theseapplicationsusecamerasspreadfur-
therapart,creatinga widesyntheticaperture.A key issuewith this
wider baselineis how to allocatethecamerasalongthetwo spatial
andonetemporaldimensions.Weshow thatfor sceneswith closely
spacedcamerasor fastmotion, triggeringall of thecamerasat the
sametime is a poor samplingstrategy. Instead,one can sample

the (x;y;t) view volumemoreuniformly by distributing the �ring
timesof thecamerasacrossthe frametime. We take advantageof
theresultingreducedimagemotionwith anoptical�o w variantthat
explicitly accountsfor parallaxmotionandobjectmotion. This al-
lowsusto interpolatemissingpointsin thespatiotemporalvolume,
creatingvirtual cameraviewsfrom new positionsin spaceandtime.
Thesetechniquescanbe usedto createMatrix-style “bullet time”
effectsin post-processing.

Basedon our experienceswith non-linearand hybrid synthetic
apertures,webelievethemostinterestingapplicationsof largecam-
eraarrayare thosethat do not try to approximatea conventional
camera.In particular, we have shown thatby shapingthesynthetic
apertureto avoid raysthatdonothit thedesiredsubject,or by creat-
ing non-cylindrical shapesin space-time,cameraarraysallow one
to createimagesthat have not beenpossiblebefore. We have ex-
plored only a fraction of the possibleapplications,and eachone
raisesquestionsthatsuggestnew opportunities.

Looking to the future, we would like to designa next-generation
cameraarray. One straightforward improvement to our system
would beaddingmoreprocessingto thecameras.Our FPGAsare
operatingnearlyat capacitydoingrelatively simpleimageprocess-
ing tasks.In a futuredesign,we would alsonot useimagesensors
with electronicrolling shutters.Therolling shutteris analogousto
a mechanicalslit shutterthatscansacrosstheimage,causingrows
at the bottomof the imageto exposeafter rows at the top. This
samplingpatternis inconvenientfor many applications.

For real-timeapplications,a future systemshouldsupportmore
�e xiblecommunicationaswell asincreasedprocessingpower. Cur-
rently, all of thevideo from our cameras�o ws directly to thehost



PCs. Live syntheticaperturevideo, which we demonstrateonly
for a modestnumberof cameras,would be easierif eachcamera
couldreducethevideoit received,addingimagesfrom downstream
camerasto its own warpedinput beforetransmittingit to upstream
cameras.Wecouldaddthis functionalityto thecurrentarchitecture
by usingmultiple IEEE1394interfacesin eachcamerato support
point-to-pointcommunicationbetweendevices,but otherapplica-
tions might have morecomplex communicationneeds.Thus,be-
fore designinga new architecture,we shouldinvestigatepotential
real-timearrayapplicationsandhow they would mapto arraysof
“smart” cameras.

Finally, many applicationswould bene�t from incorporatingac-
tive technologiesinto this system.For example,we envision using
rangesensorsor projectorsfor active matting techniquesin syn-
thetic aperturephotography. Calibrationin very unstructureden-
vironmentsmightbeaidedby lasersthatcouldcastgeometriccali-
brationtargetsinto ourscenes.Projectorsareparticularlyappealing
becausethey seempoisedto descendthesameslopeof falling cost
thatCMOSsensorsaresliding down now. Many of thechallenges
working with large arraysof projectorsare the sameasthosefor
cameras:bandwidth,control,and�e xibility . As technologieslike
projectorsandrangesensorsbecomemoreaffordableandprevalent,
we foreseecreatinglarge,hybrid cameraarraysthat not only pas-
sively observe, but alsoactively interactwith their environments.
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