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1. INTRODUCTION

Web users trust their browser to prevent malicious Web sites from leverag-
ing their machines to attack others. Organizations that permit JavaScript and
other active content through their firewall rely on the browser to protect inter-
nal network resources from attack. Modern browsers meet these expectations
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by implementing a security policy, based on the same-origin principle, that
protects honest sites from dishonest sites by isolating content from distinct
“origins.” DNS rebinding attacks subvert the same-origin principle by confus-
ing the browser into mixing content controlled by distinct entities into a single
security origin.

Using DNS rebinding, an attacker can circumvent firewalls to spider corpo-
rate intranets, exfiltrate sensitive documents, and compromise unpatched in-
ternal machines. An attacker can also hijack a user’s IP address to send spam
email and to defraud pay-per-click advertisers. DNS rebinding vulnerabilities
let the attacker read and write directly on network sockets, greatly expand-
ing on the attacks possible with existing JavaScript-based botnets [Lam et al.
2006], which can send HTTP requests to foreign hosts but cannot read the
HTTP responses.

Basic DNS rebinding attacks have been known for over a decade [Dean et al.
1996; Roskind 2001]. In the classic attack an attacker need only register a do-
main name, such as attacker.com, and attract Web traffic, for example, by run-
ning an advertisement. The attacker answers DNS queries for attacker.com
with the IP address of his or her own server and a short Time-To-Live (TTL).
The user’s browser issues an HTTP request to the attacker’s server, which re-
sponds with a malicious HTML document. The attacker’s document then issues
a second HTTP request to attacker.com. The user’s DNS cache has expired,
causing the browser to issue another DNS query for attacker.com. This time,
the attacker’s DNS server responds with the IP address of a target server. The
browser allows the attacker’s script to read HTTP responses from the target
server because the two connections share a single host name and therefore
belong to the same browser security origin. If the user is behind a firewall,
the attacker can use this attack to read sensitive documents hosted on servers
behind the firewall, as shown in Figure 1.

To mount a DNS rebinding attack, an attacker need not compromise any
DNS servers. The attacker simply provides valid, authoritative responses for
attacker.com, a domain owned by the attacker. Unlike “pharming” attacks
[Ollmann 2005] in which the attacker must compromise an honest host name,
DNS rebinding attacks can be mounted without unusual network privileges.
DNSSEC [Arends et al. 2005] provides no protection against DNS rebinding
attacks: The attacker can legitimately sign all DNS records for attacker.com
because the attacker owns the domain.

Pinning
A common DNS rebinding defense implemented in several browsers is DNS
pinning: Once the browser has resolved a host name to an IP address, the
browser caches the result for a fixed duration, regardless of TTL. With pinning,
all network connections to a given host name will be routed to the same IP
address, preventing the attacker from mixing malicious content with content
from an honest server.

Pinning is no longer an effective defense against DNS rebinding attacks be-
cause of vulnerabilities introduced by browser plug-ins. These plug-ins provide
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Fig. 1. Firewall circumvention using DNS rebinding.

additional functionality, such as socket-level network access, to Web content.
The browser and each plug-in maintain separate pin databases, creating a new
class of DNS rebinding vulnerabilities we refer to as multipin vulnerabilities.
We demonstrate, for example, how to use the interaction between the browser
and Java LiveConnect to pin the browser to one IP address while pinning Java
to another IP address. An attacker can exploit multipin vulnerabilities to read
and write directly on sockets to a host and port of the attacker’s choice. Un-
fortunately, repairing multipin vulnerabilities is not as simple as creating a
common pin database for browsers and plug-ins (see Section 5.2).

To assess the severity of these attacks, we experimentally measured the
cost and effort required to use multipin vulnerabilities to assemble a tempo-
rary, large-scale bot network. Nearly 90% of Web browsers we measured were
vulnerable to DNS rebinding attacks that required only a few hundred millisec-
onds to conduct (see Table I). These attacks do not require users to click on any
malicious links: Users need only view an attacker’s Web advertisement. Our
findings indicate that an attacker can spend less than $100 and hijack 100,000
unique IP addresses for sending spam and committing click fraud.

Deffenses. The first priority for defending against DNS rebinding attacks is
to prevent a malicious Web site from obtaining socket-level access to an arbi-
trary IP address. To prevent socket-level attacks, we propose modifications to
the socket access policies of Flash Player and Java, the two most widely de-
ployed browser plug-ins. Our proposed defenses have been adopted by Adobe
for Flash Player [Mitre 2007c] and by Sun for Java [Mitre 2007a] and Live-
Connect [Mitre 2007b]. The vendors have deployed these defenses in patches,
preventing large-scale firewall circumvention and IP hijacking.

To combat firewall circumvention, we recommend that organizations deploy
DNS resolvers that prevent external host names from resolving to internal
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Table I. Time Required for DNS Rebinding Attack by
Technology (95% confidence)

Technology Attack Time
LiveConnect (JVM loaded) 47.8 £10.3 ms
Flash Player 9.0.48.0 192 + 5.7 ms
Internet Explorer 6 (no plug-ins) 1000 ms
Internet Explorer 7 (no plug-ins) 1000 ms
Firefox 1.5 and 2 (no plug-ins) 1000 ms
Safari 3 (no plug-ins) 1000 ms
LiveConnect 1294 + 37 ms
Opera 9 (no plug-ins) 4000 ms

IP addresses. Without the ability to resolve attacker.com to an internal IP
address, the attacker cannot use DNS rebinding to circumvent firewalls. We
provide an open-source implementation of such a resolver, called dnswall [Bortz
et al. 2007]. Our implementation is included in FreeBSD [Haupt 2008] and is
deployed at a number of organizations. Several open-source consumer firewall
projects [Kelley 2008; Fainelli 2008; Gottschall et al. 2008] now implement this
defense.

Individual servers can defend themselves against DNS rebinding attacks by
validating the HTTP Host header and rejecting requests that contain an unex-
pected Host header value. Without socket-level access, the attacker Web content
is unable to spoof the Host header. This defense is appropriate for servers that
place trust, either explicitly or implicitly, in the browser’s IP address. For exam-
ple, the server responsible for recording clicks on pay-per-click advertisements
ought to validate the Host header before accepting an HTTP request as a valid
advertisement click.

Organization. The remainder of the article is organized as follows. Section 2
describes the existing browser security policy for network access. Section 3 de-
tails DNS rebinding vulnerabilities, including classic DNS rebinding and mod-
ern multipin vulnerabilities. Section 4 explains two classes of attack that use
these vulnerabilities, firewall circumvention and IP hijacking, and contains our
experimental results. Section 5 investigates potential defenses based on pin-
ning. Section 6 recommends defenses against DNS rebinding attacks. Section 7
describes related work. Section 8 concludes.

2. NETWORK ACCESS IN THE BROWSER

Web content, such as HTML, JavaScript, Cascading Style Sheets (CSS), SWF
movies, and Java applets, can instruct the browser to issue network requests.
Browsers restrict this network access to prevent malicious Web sites from abus-
ing the user’s network connectivity. The browser’s security policy provides par-
tial resource isolation by restricting access to resources according to origin,
preventing content from one origin from accessing resources from another ori-
gin. The policy applies to both network access and browser state, including the
Document Object Model (DOM) interface, cookies, cache, history, and the pass-
word database. The attacks described herein circumvent the same-origin policy
for network access.
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Definition of origin. For network access, browsers enforce the same-origin
policy [Ruderman 2001] based on three components of the Uniform Resource
Locator (URL). A typical URL contains the following components.

scheme://host:port/path?query#fragment

Browsers treat two objects as belonging to the same origin if, and only
if, their URLs contain the same scheme, host name, and port number
(e.g., http://amazon.com/ is a different origin than http://amazon.co.uk/,
even though the two domains are owned by the same company).

Objects on the Internet, however, are not accessed by host name. To retrieve
an object at a given URL, the browser must first translate the URL's host name
into an IP address and then open a socket to that IP address. If one host name
resolves to multiple IP addresses owned by multiple entities, the browser will
treat them all as if they belonged to the same origin.

Access in an origin. Within the same origin, Web content can both read
and write network resources using the HTTP protocol. Plug-ins, such as Flash
Player and Java, let Web content access network sockets directly. Using these
plug-ins, sites can make TCP connections and, in some cases, send and receive
UDP packets. Java does not restrict access based on port number, but Flash
Player 9.0.48.0 permits access to port numbers less than 1024 only if the remote
server authorizes the connection in an XML policy served from a port number
less than 1024.

Access between origins. In general, Web content from one origin can send
HTTP requests to servers in another origin, but Web content cannot read
HTTP responses from foreign origins, effectively restricting access to “send-
only.” Flash Player allows Web content to read HTTP responses from foreign
origins, but only if the remote server responds with an XML policy that au-
thorizes the read. Flash Player also allows reading and writing data on TCP
connections to arbitrary port numbers, again provided the remote server re-
sponds with a suitable XML policy on an appropriate port.

By convention, certain types of Web content are assumed to be public li-
braries, such as JavaScript, CSS, SWF movies, and Java applets. These content
types can be included from foreign origins. For example, one origin can include
a CSS file from another origin. Web content can also read certain properties of
other types of objects across origins. For example, the height and width of an
image are visible to foreign origins.

Prohibited access. Some kinds of network access are prohibited even within
the same origin. Internet Explorer 7 blocks port numbers 19 (chargen), 21
(FTP), 25 (SMTP), 110 (POP3), 119 (NNTP), and 143 (IMAP). Firefox 2 and
Safari 3 block those plus 51 additional port numbers. Some of these port re-
strictions prevent Web sites from launching denial-of-service attacks or send-
ing spam email, whereas others prevent universal cross-site scripting via the
HTML form protocol attack [Topf 2001].
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3. DNS REBINDING VULNERABILITIES

The network access security policy in Web browsers is based on host names,
which are bound by the Domain Name System (DNS) to IP addresses. An at-
tacker mounting a DNS rebinding attack subverts the browser’s security policy
by binding his or her host name to two IP addresses: one that belongs to the
attacker and one the belongs to a target server.

3.1 Standard Rebinding Vulnerabilities

A standard rebinding attack uses a single browser technology (e.g., JavaScript,
Java, or Flash Player) to connect to multiple IP addresses with the same host
name.

Multiple A records. When a browser resolves a host name, the authoritative
DNS server can respond with multiple A records indicating the IP addresses
of the host. The first DNS rebinding attack [Dean et al. 1996] in 1996 lever-
aged multiple A records to confuse the security policy of the Java Virtual Ma-
chine (JVM). The attack proceeds as follows.

(1) The user’s browser visits a malicious Web site, http://attacker.com/, that
contains a Java applet. The attacker’s DNS server (which is authoritative
for attacker.com) responds with two A records: one that contains the IP
address of the attacker’s Web server and another that contains the IP ad-
dress of the target’s Web server. The JVM chooses one of these IP addresses,
typically the first, opens a socket, and retrieves the applet.

(2) The browser runs the attacker’s applet, which requests that the JVM open
a socket to the target’s IP address. The JVM opens the socket because the
target’s IP address is contained in the DNS response for attacker. com.

Current versions of the JVM are not vulnerable to this attack because the
Java security policy has been changed. The JVM now prevents applets from
connecting to an IP address other than the IP address from which the JVM
loaded the applet. (More recent DNS rebinding attacks on Java are described
in Section 3.2.)

In the JavaScript variation of this attack, the attacker responds with an
HTML document containing malicious JavaScript that instructs the browser to
load another URL from attacker.com. The attacker’s server refuses this second
TCP connection, forcing the browser to fail over to the target IP address [Johns
2006]. By using a RST packet to refuse the connection, the attacker can cause
some browsers to fail over to the new IP address after one second. Subsequent
network requests issued by the attacker’s script will connect to the new IP
address, which points to the target.

Time-varying DNS. In 2001, security researchers discovered an extension
to the original DNS rebinding attack using time-varying DNS [Roskind 2001].

(1) The user’s browser visits a malicious Web site, http://attacker.com/. The
attacker’s DNS server responds with a single A record binding attacker. com
to the attacker’s IP address with a very short TTL.
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(2) The HTML document from the attacker’s server contains a script that issues
an XMLHttpRequest to another URL on attacker.com. The DNS cache has
expired, causing the browser to issue another DNS query for attacker. com.
The attacker’s DNS server now responds with a single A record binding
attacker.com to the target’s IP address.

(3) The browser connects to the target server and retrieves the specified URL.
Because the request was issued to the same host name as the original
malicious script, the browser delivers the HTTP response to the attacker’s
script, which then exfiltrates the data back to the attacker’s server.

Pinning in current browsers. Current browsers defend against standard
rebinding attacks by “pinning” host names to IP address, preventing host names
from referring to multiple IP addresses.

—Internet Explorer 7 pins DNS bindings for 30 minutes.! Unfortunately, if the
attacker’s host name resolves to multiple A records and the current server
becomes unavailable, the browser will fail over to another IP address within
one second.

—Internet Explorer 6 also pins DNS bindings for 30 minutes, but an attacker
can cause the browser to release its pin after one second by forcing a connec-
tion to the current IP address to fail, for example, by loading an image from a
closed port via the HTML element <img src="http://attacker.com:81/">.

—Firefox 1.5 and 2 cache DNS entries for between 60 and 120 seconds. DNS
entries expire after the value of the current minute increments twice.? To
compute when the pin will expire, the attacker can use JavaScript to read
the user’s clock. Using multiple A records, an attacker can mount an DNS
rebinding attack in approximately one second.

—Opera 9 behaves similarly to Internet Explorer 6, pinning for approximately
12 minutes, but the browser can be tricked into releasing its pin after
4 seconds by connecting to a closed port.

—Safari 3 pins DNS bindings for one second. Because the pinning time is so
low, the attacker may need to send a “Connection: close” HTTP header to
ensure that the browser does not re-use the existing TCP connection to the
attacker.

Flash Player. Flash Player 9.0.48.0 lets SWF movies open TCP sockets to
arbitrary hosts, provided the recipient authorizes the connection by serving an
appropriate XML policy [Adobe 2006]. According to Adobe, Flash Player 9 is
installed on 55.8% of Web browsers as of December 2006 [Adobe 2008]; our
experiment in April 2007 observes Flash Player 9 on 86.9% of browsers. Flash
Player 9.0.48.0 is vulnerable to the following rebinding attack, which is shown
in Figure 2.

IThe duration is set by the registry keys DnsCacheTimeout and ServerInfoTimeOut in
HKEY_CURRENT_USER\SOFTWARE\Microsoft Windows\CurrentVersion\Internet Settings.
2The duration is set by the network.dnsCacheExpiration preference value.
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Fig. 2. DNS rebinding attack using the Flash Player policy file.

(1) The user’s browser visits a malicious Web site that embeds a SWF movie.

(2) The SWF movie opens a socket on a port less than 1024 to attacker.com,
which the attacker’s authoritative DNS server binds to the IP address of
the attacker’s server with a short TTL.

(3) Flash Player sends <policy-file-request /> on the socket.
(4) The attacker responds with the following XML.

<?xml version="1.0"7>
<cross-domain-policy>

<allow-access—from domain="*" to-ports="x" />
</cross-domain-policy>

This XML policy authorizes all domains to make socket connections to all
ports.

(5) The SWF movie opens a socket to a port number of the attacker’s choice
on attacker.com. Because the DNS cache has expired, Flash Player makes
another DNS query for attacker.com, which the attacker’s authoritative
DNS server now binds to the IP address of the target.

Flash Player 9.0.48.0 permits the socket connection to the target server be-
cause it does not pin host names to a single IP address. If the attacker were
to serve the policy file from port number 1024 or above, Flash Player would
authorize connections only to port numbers 1024 or above.

3.2 Multipin Vulnerabilities

Current browsers use a number of plug-ins to render Web pages, several of
which provide Web content some form of direct socket access. These plug-ins
restrict socket access based on the origin of the content opening the connection.
Even if each plug-in pins host names to IP addresses, there is no guarantee that
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Fig. 3. DNS rebinding using LiveConnect.

all the technologies will pin the attacker’s host name to the same IP address.
If one component pins attacker.com to the attacker’s IP address and another
pins attacker.com to the target’s IP address, the attacker can make use of
intercomponent communication to circumvent the restrictions on network ac-
cess. Some of these attacks have been discussed previously in the full-disclosure
community [Anvil 2007].

Java. Java,installed on 87.6%2 of Web browsers [Adobe 2008], lets Web con-
tent open TCP connections back to its origin. The Java Virtual Machine (JVM)
pins DNS host names to IP addresses using a different pin database than the
browser, opening up the possibility of multipin DNS rebinding vulnerabilities.
Java applets themselves are not vulnerable because the JVM retrieves applets
directly from the network, letting the JVM pin the origin of the applet to the cor-
rect IP address. However, the JVM (JRE 6 Update 2 and earlier [Mitre 2007a,
2007b]) is vulnerable to the following attacks.

— LiveConnect bridges JavaScript and the JVM in Firefox and Opera, permit-
ting script access to the Java standard library, including the Socket class,
without an accompanying applet. The browser pins attacker.com to the at-
tacker’s IP address, but the JVM spawned by LiveConnect does a second
DNS resolve and pins attacker.com to the target’s IP address. As shown in
Figure 3, the attacker can exploit this pin mismatch to open and communi-
cate on a socket from the user’s machine to an IP address and port of the
attacker’s choice. Additionally, the attacker can use this technique to com-
municate on UDP sockets with high-numbered source ports.

—Applets behind HTTP proxies are also vulnerable to a multipin attack. If the
user accesses the Web via an HTTP proxy, there is yet another DNS resolver

3We observed 98.1% penetration in our experiment.
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involved: the proxy. When the JVM retrieves an applet via a proxy, the JVM
requests the applet by host name, not by IP address. If the applet opens a
socket, the JVM does a second DNS resolve and the attacker can cause the
JVM to pin to the target’s IP address.

— Relative paths can cause multipin vulnerabilities. If a server hosts an HTML
document that embeds an applet using a relative path, that server can be
the target of a multipin attack. The attacker first binds attacker.com to the
target server’s IP address, pinning the browser to the target. The browser
retrieves the target’s HTML document, which embeds an applet via a rela-
tive path. The browser completes the relative path to an absolute path on
attacker.com and instructs the JVM to load the applet. The JVM does a sec-
ond DNS resolve, pins to the attacker, and retrieves an applet from the at-
tacker. The malicious applet then instructs the browser, using a javascript:
URL, to issue XMLHttpRequests to attacker.com, which the browser has
pinned to the target’s IP address.

Flash Player. Flash Player would still be vulnerable to multipin attacks,
even if it strictly pinned host names to IP addresses. In some embeddings,
Flash Player does not retrieve SWF movies directly from the network. Instead,
the browser downloads the movie and spawns the Flash Player, transferring the
movie’s origin by URL. When the attacker’s movie attempts to open a socket,
Flash Player does a second DNS resolution and could receive a different IP
address than the browser.

In addition to sockets, Flash Player provides a facility for retrieving URL, the
URLLoader class. URLLoader is not vulnerable to multipin attacks because Flash
Player fulfills URL requests using the browser’s network stack, providing the
attacker little additional leverage over the browser’s native XMLHttpRequest.

4. ATTACKS USING DNS REBINDING

An attacker can exploit the DNS rebinding vulnerabilities described in Section 3
to mount a number of attacks. For some of these attacks, the attacker requires
the direct socket access afforded by DNS rebinding with Flash Player and Java.
Other attacks require only the ability to read HTTP responses from the target.
The attacks fall into two broad categories, according to the attacker’s goal.

—Firewall Circumvention. Using DNS rebinding, the attacker can connect to
otherwise inaccessible machines behind firewalls. With direct socket access,
the attacker can interact with a number of internal services besides HTTP.

—IP Hijacking. The attacker can also use DNS rebinding to access publicly
available servers from the user’s IP address. This allows the attacker to take
advantage of the target server’s implicit or explicit trust in the user’s IP
address.

To mount these attacks, the attacker must first attract the user to attacker. com,
causing the browser to render the attacker’s active content. Section 4.3
discusses a number of techniques an attacker can use to drive traffic to
attacker.com. Once loaded onto the client’s machine, the attacker’s code can
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exploit DNS rebinding vulnerabilities to communicate with any machine reach-
able by the user’s machine.

4.1 Firewall Circumvention

A firewall restricts traffic between computer networks in different zones of
trust. Typically, organizations deploy firewalls to block connections from the
public Internet to internal machines and to mediate connections from internal
machines to Internet servers with application-level proxies. Firewall circum-
vention attacks bypass the prohibition on inbound connections, allowing the
attacker to connect to internal servers while the user is visiting attacker.com
(see Figure 1).

Spidering the intranet. The attacker need not specify the target machine
by IP address. Instead, the attacker can guess the internal host name of the
target, for example hr. corp.company.com, and rebind attacker.com to a CNAME
record pointing to that host name. The browser’s own recursive DNS resolver
will complete the resolution and return the IP address of the target. Intranet
host names are often guessable and occasionally disclosed publicly [Microsoft
2004; Edwards 2005]. Using this technique, the attacker need not scan IP ad-
dresses to find an interesting target. However, this technique is incompatible
with vulnerabilities that require the attacker’s DNS server to return multiple
A records.

Having found a machine on the intranet, the attacker can connect to the ma-
chine over HTTP and request the / document. If the server responds with an
HTML document, the attacker can follow the document’s hyperlinks, eventually
spidering the organization’s intranet. Web servers behind corporate firewalls
often host confidential documents, relying on the firewall to prevent untrusted
users from accessing the documents. Using a DNS rebinding attack, the at-
tacker can leverage the user’s browser to read these documents and exfiltrate
them to the attacker, for example, by submitting an HTML form to the attacker’s
Web server.

Compromising unpatched machines. Network administrators often do not
patch internal machines as quickly as Internet-facing machines because the
patching process is time consuming, expensive, and can have unpredictable
effects. Using DNS rebinding, an attacker can attempt to exploit known vul-
nerabilities in machines on the internal network. In particular, the attacker
can attempt to exploit the user’s machine itself. The attacks against the client
itself originate from localhost and so bypass software firewalls and other se-
curity checks, including many designed to mitigate serious vulnerabilities. If
an exploit succeeds, the attacker can establish a presence within the firewall
that persists even after the user closes his or her browser.

Abusing internal open services. Internal networks contain many open ser-
vices intended for internal use only. For example, network printers often accept
print jobs from internal machines without additional authentication. The at-
tacker can use direct socket access to command network printers to exhaust
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their toner and paper supplies. Similarly, users behind firewalls often feel com-
fortable creating file shares or FTP servers accessible to anonymous users un-
der the assumption that the servers will be available only to users within the
network. With the ability to read and write arbitrary sockets, the attacker can
exfiltrate the shared documents and use these servers to store illicit information
for later retrieval. Additionally, consumer routers are often installed without
changing the default password, making them an attractive target for reconfig-
uration attacks by malicious Web sites [Stamm et al. 2006]. Firmware patches
have attempted to secure routers against cross-site scripting and cross-site re-
quest forgery, in an effort to prevent reconfiguration attacks. DNS rebinding
attacks bypass these defenses and let an attacker access the router’s configu-
ration interface as if the attacker was behind the firewall.

4.2 IP Hijacking

Attackers can also use DNS rebinding attacks against machines on the public
Internet. In these attacks, the attacker does not leverage the user’s machine
to connect to otherwise inaccessible services. Instead, the attacker abuses the
implicit or explicit trust that public services place in the user’s IP address.
After hijacking the user’s IP address, the attacker can perpetrate a number of
attacks.

Click fraud. Web publishers are often paid by Web advertisers per adver-
tisement click. Fraudulent publishers can increase their advertising revenue
by generating fake advertisement clicks, and advertisers can drain competi-
tors’ budgets by clicking on their advertisements. The exact algorithms used
by advertising networks to detect these “invalid” clicks are proprietary, but
the IP address initiating the click is widely believed to be an essential input.
In fact, one common use of bot networks is to generate clicks [Daswani et al.
2007]. Although generating a fraudulent click appears require only the ability
to send an HTTP request to the advertisement network, many networks defend
against send-only attacks by including a unique nonce with every advertising
impression. Clicks lacking the correct nonce are rejected as invalid, requiring
the attacker to read the nonce from an HTTP response in order to register a
click. Using DNS rebinding to commit click fraud is highly cost effective because
the attacker can buy advertising impressions, which cost tens of cents per thou-
sand, and convert them into clicks, worth tens of cents each. In fact, the attack
is sufficiently cost effective that the attacker need not convert every purchased
impression into a click. Instead, the fraudster can use the vast majority of the
purchased impressions to generate fake impressions on the publisher’s site,
maintaining a believable click-through rate.

Spam. Many email servers blacklist IP addresses that are known to send
spam email [Spamhaus 2007]. By hijacking a user’s IP address, an attacker
can send spam email from an IP address with a clean reputation. To send spam
email, the attacker must send packets to SMTP servers on port 25, an action
blocked by most browsers but permitted by Flash Player and Java. Addition-
ally, an attacker can often send spam email using the user’s actual mail relay.
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Even service providers that require successful authentication via POP3 before
sending email are not protected because users typically leave their desktop mail
clients open and polling their POP3 servers.

IP-based authentication. Although discouraged by security profession-
als [Fenzi and Wreski 2004], many Internet services still employ IP-based au-
thentication. For example, the ACM Digital Library makes the full text of ar-
ticles available only to subscribers, who are often authenticated by IP address.
After hijacking an authorized IP address, the attacker can access the protected
service, defeating the authentication mechanism. Because the communication
originates from an IP address actually authorized to use the service, the attack
can be difficult for the service provider to detect.

Framing users. An attacker who hijacks a user’s IP address can perform
misdeeds and frame the user. For example, an attacker can attempt to gain
unauthorized access to another computer system using a hijacked IP address
as a proxy. As the attack originates from the hijacked IP address, the target
system’s logs will implicate the user, not the attacker, in the crime. Moreover,
if the attacker hosts the malicious Web site over HTTPS, the user’s browser
will not cache the responses and the user might be left without exculpatory
evidence.

4.3 Proof-of-Concept Experiment

We developed proof-of-concept exploits for DNS rebinding vulnerabilities in
Flash Player 9.0.48.0, LiveConnect, Java applets with proxy servers, and the
browser itself. Our system consists of a custom DNS server (authoritative for
a domain we control), a custom Flash Player policy server, and a standard
Apache Web server. The various technologies issue DNS queries that encode
the attacker and target IP addresses, together with a nonce, in the subdomain.
For each nonce, the DNS server first responds with the attacker’s IP address
(with a zero TTL) and thereafter with the target’s IP address.

Methodology. We used our proof-of-concept to test experimentally the prac-
ticality of mounting DNS rebinding attacks. We ran a SWF advertisement on
an advertising network targeting the keywords “Firefox,” “game,” “Internet Ex-
plorer,” “video,” and “YouTube.” One machine in our laboratory played the role
of the attacker and another played the role of a target. The attack server ran a
custom DNS server, a custom Flash Player policy server, and a standard Apache
Web server hosting the advertisement. The target ran a standard Apache Web
server to log successful attacks. The SWF advertisement exploited the DNS
rebinding vulnerability described in Section 3.1 to retrieve an XML document
from the target server in our lab. To succeed, the attack requires only the user’s
browser view our advertisement. No user interaction is required.

The experiment lasted until the user navigated away from the advertise-
ment, at which time we lost the ability to use the user’s network connection.
For privacy, we collected only properties typically disclosed by browsers when
viewing Web pages (e.g., plug-in support, user agent, and external IP address).
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Table II. Percentage of Impressions by

Vulnerability
Vulnerability Impressions
Flash Player 9 86.9%
LiveConnect 24.4%
Java+Proxy 2.2%
Total Multi-Pin 90.6%

The experiment conformed to the terms of service of the advertising network
and to the guidelines of the independent review board at our institution. Ev-
ery network operation produced by the advertisement could have been pro-
duced by a legitimate SWF advertisement, but we produced the operations
through the Socket API, demonstrating the ability to make arbitrary TCP
connections.

Results. We ran the ad beginning at midnight EDT on three successive
nights in late April 2007. We bid $0.50 per 1000 impressions and spent $10
per day, garnering approximately 20,000 impressions per day. Due to a server
misconfiguration, we disregarded approximately 10,000 impressions. We also
disregarded 19 impressions from our university. We in total counted 50,951
impressions from 44,924 unique IP addresses (40.2% IE7, 32.3% IE6, 23.5%
Firefox, 4% Other).

We ran the DNS rebinding experiment on the 44,301 (86.9%) impressions
that reported support for Flash Player 9. We did not attempt to exploit other re-
binding vulnerabilities (see Table 2). The experiment was successful on 30,636
(60.1%) impressions and 27,480 unique IP addresses. The attack was less suc-
cessful on the 1,672 impressions served to Mac OS, succeeding 36.4% of the
time, compared to a success rate of 70.0% on the 49,535 (97.2%) Windows
impressions.* Mac OS is more resistant to this DNS rebinding attack because
the Mac OS caches DNS entries despite their zero TTL.

For each successful experiment, we measured how long an attacker could
have used the user’s network access by loading the target document at exponen-
tially longer intervals, as shown in Figure 4. The median impression duration
was 32 seconds, with 25% of the impressions lasting longer than 256 seconds.
We observed 9 impressions with a duration of at least 36.4 hours, 25 at least
18.2 hours, and 81 at least 9.1 hours. In aggregate, we obtained 100.3 machine-
days of network access. These observations are consistent with those of Lam
et al. [2006]. The large number of attacks ending between 4.2 and 8.5 minutes
suggests that this is a common duration of time for users to spend viewing a
Web page.

Discussion. Our experimental results show that DNS rebinding vulnerabil-
ities are widespread and cost effective to exploit on a large scale. Each impres-
sion costs $0.0005 and 54% of the impressions convert to successful attacks from
unique IP addresses. For the impressions that reported a vulnerable version of

4We succeeded in opening a socket with 2 of the 11 PlayStation 3 impressions (those with Flash
Player 9), but none of the 12 Nintendo Wii impressions were vulnerable.

ACM Transactions on the Web, Vol. 3, No. 1, Article 2, Publication date: January 2009.



Protecting Browsers from DNS Rebinding Attacks . 2:15

Cumulative Duration of Successful Attacks
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Fig. 4. Duration of successful attacks.

Flash Player but did not lead to a successful attack, we speculate the attack
was unsuccessful due to firewalls that blocked outbound connections to our pol-
icy server, insufficient impression duration, or users who have disabled Flash
Player.

To temporarily hijack 100,000 IP addresses an attacker would need to spend
less than $100. This technique compares favorably to renting a traditional bot
network for sending spam email and committing click fraud, for two reasons.
First, these applications require large numbers of “fresh” IP addresses for short
durations because compromised machines are quickly blacklisted. Second, al-
though estimates of the rental cost of bot networks vary [Warner 2004; Goodin
2005; Daswani et al. 2007], this technique appears to be at least one or two
orders of magnitude less expensive.
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5. PINNING

Historically, browsers have used pinning to defend against DNS rebinding at-
tacks. In this section, we explore improvements to pinning and discuss several
disadvantages to the pinning approach.

5.1 Smarter Pinning

Pinning trades-off availability for security. RFC 1035 [Mockapetris 1987] pro-
vides for small (and even zero) TTLs to enable dynamic DNS and robust be-
havior in the case of server failure, but respecting these TTLs allows rebinding
attacks. Over the last decade, browsers have experimented with different pin
durations and pin release heuristics, leading some vendors to shorten their pin
duration to improve robustness [Fisher et al. 2003]. However, duration is not
the only parameter that can be varied in a pinning policy.

Pin width. Browsers can vary the “width” of their pins by permitting host
names to be rebound within a set of IP addresses that meet some similar-
ity heuristic. Selecting an optimal width as well as duration enables a better
trade-off between security and robustness than optimizing duration alone. One
promising policy is to allow rebinding within a /24 network. For example, if a
host name resolved to 171.64.78.10, then the browser could let the host name
resolve to any IP address beginning with 171.64.78. The developers of the
NoScript Firefox extension [Maone 2007b] announced plans [Maone 2007a] to
adopt this pinning heuristic.

Security. When browsers use /24 network pinning, the attacker must locate
the attack server on the same /24 network as the target, making the rebinding
attack much more difficult to mount. The attack is possible only if the attacker
colocates a server at the same hosting facility or leverages a cross-site scripting
vulnerability on a colocated server. This significantly raises the bar for the at-
tacker and provides better recourses for the target because the target typically
has a business relationship with the operator of the /24 network.

Robustness. To study the robustness of /24 network pinning, we investi-
gated the IP addresses reported by the 100 most visited English-language
sites according to Alexa [2007]. We visited the homepage of these sites
and compiled a list of the 336 host names used for embedded content
(e.g., http://www.yahoo.com/ embeds images from us.il.yimg.com). We then
issued DNS queries for these hosts every 10 minutes for 24 hours, recording the
IP addresses reported. In this experiment, 58% reported a single IP address con-
sistently across all queries. Note that geographic load balancing is not captured
in our data because we issued our queries from a single machine, mimicking
the behavior of a real user. Averaged over the 42% of hosts reporting multiple
IP addresses, if a browser pinned to an IP address at random, the expected
fraction of IP addresses available for rebinding under /24 network pinning is
81.3% compared with 16.4% under strict IP address pinning, suggesting that
/24 pinning is significantly more robust to server failure.
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Width heuristics. Other heuristics for pin width are possible. The browser
could prevent rebinding between public IP addresses and the RFC 1918
[Rekhter et al. 1996] private IP addresses. This provides greater robustness
for fail-overs across data centers and for dynamic DNS. LocalRodeo [Johns and
Winter 2007; Winter and Johns 2007] is a Firefox extension that implements
RFC 1918 pinning. As for security, RFC 1918 pinning largely prevents firewall
circumvention but does not protect against IP hijacking, nor does it prevent
firewall circumvention in the case where a firewall protects nonprivate IP ad-
dresses, which is the case for many real-life protected networks and personal
software firewalls.

Even the widest possible pinning heuristic prevents some legitimate rebind-
ing of host names. For example, public host names controlled by an organization
often have two IP addresses: a private IP address used by machines within the
firewall and a public IP address used by browsers on the Internet. Pinning
prevents employees from properly connecting to these servers after joining the
organization’s Virtual Private Network (VPN) because these host names appear
to rebind from public to private IP addresses.

Instead of using unpinning heuristics, browsers could consult server-
supplied policies to determine whether it is safe to repin a host name from
one IP address to another, providing robustness without degrading security. To
repin safely, the browser must obtain a policy from both the old and the new IP
address (because some attacks first bind to the attacker’s IP address, whereas
others first bind to the target’s IP address). Servers can supply this policy at a
well-known location, such as /crossdomain.xml, or in reverse DNS.

5.2 Pinning Pitfalls

Correctly implementing pinning has several subtleties that are critical to its
ability to defend against DNS rebinding attacks.

Common pin database. To eliminate multipin attacks, pinning-based de-
fenses require that all browser technologies that access the network share a
common pin database. Many plug-ins, including Flash Player and Silverlight,
already use the browser’s pins when issuing HTTP requests because they issue
these requests through the browser. To share DNS pins for other kinds of net-
work access, either the browser could expose an interface to its pin database
or the operating system could pin in its DNS resolver. Unfortunately, browser
vendors appear reluctant to expose such an interface [Fisher 2007; Nuuja 2007]
because changes to the plug-in interface are fragile and difficult to modify with-
out introducing forwards or backwards compatibility issues. Pinning in the op-
erating system either changes the semantics of DNS for other applications or
requires that the OS treat browsers and their plug-ins differently from other
applications.

Cache. The browser’s cache and all plug-in caches must be modified to pre-
vent DNS rebinding attacks. Currently, objects stored in the cache are retrieved
by URL, irrespective of the originating IP address, creating a DNS rebind-
ing vulnerability: A cached script from the attacker might run later when
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P

@. http://subdomain.attacker.com/ | Q @

subdomain.attacker.com | 66.66.66.66
attacker.com | 192.168.1.100

<p>The launch codes are X23F51.</p>

document.domain = document.domain;

document.domain = "attacker.com";
alert(frames[0].document.documentElement.innerHTML);

Fig. 5. The attacker’s Web page can read confidential information from the inner frame, which
points to an intranet site.

attacker.comis bound to the target [Soref 2003]. To prevent this attack, objects
in the cache must be retrieved by both URL and IP address. This degrades per-
formance when the browser pins to a new IP address, which might occur when
the host at the first IP address fails, the user starts a new browsing session, or
the user’s network connectivity changes.

document.domain. Even with the strictest pinning, a server is vulnerable
to rebinding attacks if the sever hosts an HTML document that executes the
following, seemingly innocuous, JavaScript.

document.domain = document.domain;

Setting document.domain to document.domain is not an NOP. Instead, this
loosens the browser’s enforcement of the same-origin policy for the current
document because the document has invited cross-origin script interactions
from any other document that has set its document.domain to the same
value [Veditz et al. 2002; Grimm et al. 2002]. This idiom is used by an
number of JavaScript libraries, such as the Struts servlet/JSP-based Web
application framework, the jsMath AJAX Mathematics library, and Sun’s
“Ultimate client-side JavaScript client sniff” library. Using the idiom, how-
ever, renders a site vulnerable to the following attack, as shown in Fig-
ure 5. The attacker points subdomain.attacker.com at the attacker’s Web
server (e.g., 66.66.66.66) and points attacker.com at the target server (e.g.,
196.168.1.100). The target server, if it uses the aforesaid idiom, sets its
document.domain to the value attacker.com. The attacker’s server also sets
its document.domain to attacker.com and can read documents on the tar-
get server. The “Dojo” AJAX library was also affected by this issue, but
was fixed in version 0.9.0 after we explained the vulnerability to a Dojo
developer.
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6. RECOMMENDED DEFENSES

To defend against DNS rebinding attacks, we recommend changes to plug-ins,
firewalls, and servers. Plug-ins can repair their socket-level DNS rebinding
vulnerabilities by adding additional policy checks before opening sockets. Fire-
walls can unilaterally defend against their own circumvention by preventing
external host names from resolving to internal IP addresses. After the plug-ins
have repaired the socket-level vulnerabilities, individual servers can protect
themselves from DNS rebinding by validating the HTTP Host header.

6.1 Securing Socket Access

Plug-ins comprise a particular source of complexity in defending against DNS
rebinding attacks because they enable subsecond attacks, provide socket-level
network access, and operate independently from browsers. Plug-ins that grant
socket-level access to Web content either default to allowing socket connection
or they default to denying socket-level access. Different DNS rebinding defenses
are appropriate for these different socket access paradigms.

Default allow. Java defaults to allowing socket connections back the con-
tent’s origin server. In situations in which the JVM did not retrieve the content
directly from an IP address, the JVM can defend against DN'S rebinding attacks
by validating that the destination server is willing to accept socket connections
from the content’s host name. Essentially, the defense requires an oracle that
determines, for a given IP address and host name, whether the server at that IP
addresses authorizes that host name. Unlike forward DNS queries in which the
host name is authoritative for responding to queries, DNS rebinding requires
that the IP address is authoritative for authorizing host names.

The reverse DNS system can be extended to authorize host names with-
out sacrificing backwards compatibility. In the simple case, the owner of
an IP address, such as 171.64.78.146, can authorize a host name, such as
www . example. com, by including the following PTR record in DNS.

146.78.64.171.in-addr.arpa. IN PTR www.example.com

This record follows the format of existing reverse DNS deployments, leveraging
the existing deployment of reverse DNS to bootstrap policy deployment. Unfor-
tunately, this record format can encode only one host name per IP address.
Many large-scale deployments host a Web server for more than one host name
on a single IP address using virtual hosting. We also propose that the JVM
consult reverse DNS records of the form given next.

www.example.com.auth.146.78.64.171.in-addr.arpa. IN A 171.64.78.146

This scheme uses the auth subdomain to authorize a set of host names for an
IP address.

One disadvantage of storing policy information in reverse DNS is that the
owner of the reverse delegation of an IP address, the ISP, might not be the
owner of the machine at that IP address. The machine can advertise the cor-
rect set of authorized host names only if the ISP is willing to delegate the auth
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subdomain to the owner or is willing to insert appropriate DNS records. Al-
ternatively, machines could advertise authorized host names over HTTP in a
well-known location, similar to crossdomain.xml, but this has several disad-
vantages: Servers accepting socket connections must run an HTTP server and
policy files served over HTTP will not be cached by the DNS infrastructure,
resulting in extra traffic comparable to favicon.ico.

Default deny. By default, Flash Player denies SWF movies socket-level ac-
cess. The destination server can opt into accepting socket connections by pro-
viding an XML policy. Flash Player can defend against DNS rebinding by con-
sidering these XML policies valid only for the IP address from which they were
obtained. If a SWF movie attempts to connect to another IP address, even one
with the same host name, Flash Player should request another policy file. If
an attacker attempts to rebind attacker.com to a target server, Flash Player
will request another XML policy from the target server to determine whether
to open the socket. This modification to the policy behavior is backwards com-
patible with existing policy deployments because all honest servers that share
a host name are expected to serve the same XML policy.

For port numbers greater than or equal to 1024, Flash Player 9.0.48.0 de-
faults to allowing socket access to the SWF movies origin server. Although
the majority of services an attacker can profitably target (e.g., SMTP, HTTP,
HTTPS, SSH, FTP, NNTP) are hosted on low-numbered ports, other services,
such as MySQL, BitTorrent, IRC, and HTTP proxies, typically listen on high-
numbered ports. We propose that Flash Player default to denying socket-
level access in these cases and use the XML policy mechanism to prevent
DNS rebinding attacks. This change breaks backwards compatibility with
existing deployments who are not hosting XML policies on high-numbered
ports.

Adoption. Sun has adopted our proposal in the JVM, both for applets behind
proxies [Mitre 2007a] and for LiveConnect [Mitre 2007b]. In both cases, the up-
dated JVM blocks network requests if the host name is not explicitly authorized
in reverse DNS. Adobe has adopted both of our proposals and has patched Flash
Player to prevent socket-level DNS rebinding vulnerabilities [Mitre 2007c]. Mi-
crosoft also adopted our proposed defense for Flash Player to secure Silverlight’s
Socket API [Microsoft 2008].

6.2 Firewall Defenses

Networks can protect themselves against firewall circumvention by forbidding
external host names from resolving to internal IP addresses, preventing the
attacker from naming an internal target server attacker.com. Without the
ability to name the target, the attacker cannot aggregate the target server into a
browser security origin under his or her control. These malicious DNS bindings
can be blocked unilaterally, either by filtering packets at the firewall [Cheswick
and Bellovin 1996] or by modifying the DNS resolvers used by machines on the
network.

ACM Transactions on the Web, Vol. 3, No. 1, Article 2, Publication date: January 2009.



Protecting Browsers from DNS Rebinding Attacks . 2:21

Internal IP addresses. 'Which IP addresses are “internal” varies by network
configuration. Although some internal networks use publicly routable IP ad-
dresses, most use RFC 1918 [Rekhter et al. 1996] private IP addresses. In
addition to the RFC 1918 addresses, many machines will respond to other IP
addresses. In some deployments, an attacker can mount a DNS rebinding at-
tack by returning a DNS record as described next.

—CNAME. Unless the filter blocks CNAME records that refer to internal host
names, an attacker can use the following DNS record to bind to an internal
IP address: attacker.com. IN CNAME www.corp.example.com. By examining
DNS responses after the external DNS resolver completes a recursive DNS
resolution, the filter can block all CNAME records.

—Localhost. In addition to 127.0.0.1, many machines listen on the entire
class A subnet 127 .. % . *,

—Zero Configuration. In the absence of DHCP, many machines will allocate
themselves an unused address in the class B subnet 169.254 .. * [Cheshire
et al. 2005]. These addresses can remain valid even after the machine receives
an address from DHCP.

—Multicast. Although not commonly used, multicast lets many machines re-
ceive data sent to a single IP address. Internal machines could respond to
IP addresses in the subnets 224-239.*.x.*, which are reserved for multi-
cast [Reynolds and Postel 1994; Meyer 1998].

—IPv6. Some machines respond to IPv6 addresses, contained in AAAA
records. The filter blocks loopback, : :1/128, link-local, £e80: : /10, site-local,
fecO::/10, multicast, ££00::/8, and “globally unique local.” £c00::/7, ad-
dresses [Hinden and Deering 2003; Hinden and Haberman 2005]. To assist
backwards compatibility, the IPv4 address space is embedded into the IPv6
address space twice [Hinden and Deering 2003]; specifically, once at ::/96
and once at ::ffff:00:00:00:00/96. The filter should block undesirable
IPv4 addresses from both embeddings because some machines listen for their
IPv4 addresses at both of their embedded IPv6 addresses.

Deployment. There are three classes of firewall which can defend against
DNS rebinding by preventing external host names from resolving to internal
IP addresses.

— Enterprise. By blocking outbound traffic on port 53, a firewall administrator
for an organization can force all internal machines, including HTTP proxies
and VPN clients, to use a hardened DNS server that prevents external names
from resolving to internal IP addresses. We implemented this approach in
a 300-line C program, called dnswall [Bortz et al. 2007]. Running alongside
BIND, dnswall modifies DNS responses that attempt to bind external names
tointernal IP addresses. A number of organizations have deployed dnswall to
protect their corporate networks, and dnswall is included in FreeBSD [Haupt
2008].

—Consumer. Consumer firewalls can also defend their private networks from
firewall circumvention by using dnswall to block DNS responses that contain
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private IP addresses. These firewalls, such as those produced by Linksys,
can implement this defense without user configuration because these de-
vices often manage the allocation of private IP addresses. Moreover, the ven-
dors of these devices have an incentive to patch their products because DNS
rebinding attacks can be used to access the private configuration interface
of these devices and potentially reconfigure them to mount further attacks
on their owners. A number of open-source consumer firewall projects have
adopted dnswall-like protection, including Dnsmasq [Kelley 2008], Open-
Wrt [Fainelli 2008], and DD-WRT [Gottschall et al. 2008].

—Software. Software firewalls can defend the local loopback interface from
DNS rebinding attacks by blocking DNS resolutions to 127 . *.*. *. This tech-
nique does not protect services that bind to the external network interface,
even if the software firewall blocks inbound packets. The technique does,
however, defend services that bind to the local loopback interface. Window
and Linux both have a number of sensitive services, such as RPC, that listen
on ports on the local loopback interface.

6.3 Server Defense: Host Header Checking

HTTP 1.1 requires that user agents include a Host header in HTTP requests
that specifies the host name of the server [Fielding et al. 1999]. This feature
is used extensively by HTTP proxies and by Web servers to host many virtual
hosts on one IP address. Now that plug-in vendors have repaired the socket-
level vulnerabilities, servers can use the Host header to protect themselves
against DNS rebinding attacks.

During a DNS rebinding attack, the browser sends a Host header with
the attacker’s host name to the target server. Using browser APIs such as
XMLHttpRequest, Web content can specify HTTP headers but cannot modify
the Host header. A server can protect itself from DNS rebinding attacks by
rejecting HTTP requests that contain an unrecognized or unexpected Host
header [Megacz 2002; Ross 2007]. For example, Apache servers can defend
themselves using the ModSecurity following rule.

SecRule REQUEST_HEADERS:Host ! “www\.example\.com(:\d+)7$ deny,
status:403

This rule validates that the Host header contains the expected value, rejecting
requests with unexpected or absent Host headers.

Limitations. Checking the Host header is inconvenient for servers that do
not know their host name. For example, most home routers to not know the
host name of their Web configuration interface. Because these servers are typ-
ically behind firewalls, the firewall defenses described in Section 6.2 are more
appropriate. Older versions of Flash Player and the JVM have DNS rebinding
vulnerabilities that allow an attacker to spoof the Host header [Klein 2006].
These outdated plug-ins also have other vulnerabilities that can be used to by-
pass the browser’s same-origin policy entirely [Mitre 2008, 2007d], preventing
any of defenses presented in this article from protecting servers or firewalls.
We recommend that users of these older versions update immediately.
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7. RELATED WORK

IP-based origins. Another approach to repairing DNS rebinding vulnera-
bilities is to refine the browser’s definition of a security origin to include the re-
mote server’s IP address [Megacz 2002]. In this approach, an attacker’s script,
retrieved when attacker.com was bound to the IP address of the attacker’s
server, will be unable to access content retrieved when attacker.com is bound
to the IP address of the target. IP-based origins are more robust than pinning
because a single browsing session can fail-over from one IP address to an-
other. Such a fail-over, however, will likely break long-lived AJAX applications,
such as Gmail, because the browser will prevent the application from issuing
XMLHttpRequests to the new IP address.

There are a number of challenges to implementing IP-based origins.

(1) Proxies. Browsers behind a proxy server do not know the actual IP address
of the remote server and thus cannot properly refine origins. There are two
proposals [Megacz 2002; Megacz and Meketa 2003] for including IP addresses
in proxy responses, but neither has been adopted.

(2) Cache. Browsers typically do not store the IP address of cached resources.
IP-based origins require augmenting the browser cache with IP addresses, as
described in Section 5.1.

(3) Plug-Ins. All browser technologies, including plug-ins, must implement
IP-based origins and interacting technologies must hand-off refined origins cor-
rectly.

(4) Relative Paths. IP-based origins do not prevent DNS rebinding attacks if
the target server embeds active content, such as a script, a SWF movie, or a
Java applet, via a relative path [Jackson and Barth 2008].

Using browsers as bots. To create a Puppetnet [Lam et al. 2006], an at-
tacker lures Web users to an malicious site and then distracts them while their
browsers participate in a coordinated attack. Puppetnets can be used for dis-
tributed denial of service, but cannot be used to mount the attacks described
in Section 4 because Puppetnets cannot read HTTP responses from different
origins nor can they connect to forbidden ports such as 25. Browsers can also
be misused to scan behind firewalls [Grossman and Niedzialkowski 2006] and
reconfigure home routers [Stamm et al. 2006]. These techniques often rely on
guessing a device’s default passwords or on an underlying cross-site scripting
or cross-site request forgery vulnerability.

Dynamic pharming. Some attacks [Karlof et al. 2007; Gajek et al. 2008]
combine DNS rebinding with compromised DNS servers. These “dynamic”
pharming attacks use DNS rebinding to rebind a trusted host name from the
IP address of the attacker’s server to the IP address of the target server. If the
site employs HTTPS, this attack typically requires the user to dismiss common-
name mismatch certificate errors. However, DNS rebinding is not required for
these attacks because the attacker can simply forward the TLS session to the
target server at the TCP layer. Instead of rebinding the trusted host name, the
attacker can simply cease to forward TCP packets.
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8. CONCLUSIONS

DNS rebinding has been a recurring source of browser vulnerabilities for the
past decade. The classic defense, pinning, reduces robustness and has difficulty
scaling to modern browsers, which use a number of plug-ins to render Web
content. If each plug-in maintains a separate pin database, an attacker can use
intratechnology communication to mount a multipin DNS rebinding attack.
Plug-ins create additional security challenges because they expose additional
functionality to Web content, including the ability to communicate directly on
sockets. Using DNS rebinding, an attacker can use this functionality to obtain
socket-level access to an arbitrary host from the user’s machine, circumventing
firewalls and hijacking the user’s IP address.

Because DNS rebinding attacks do not require the attacker to compromise
DNS, these vulnerabilities can be exploited on a large scale at low cost. By
running a Web advertisement, an attacker can supply content to a large num-
ber of browsers at a fraction of a cent per impression. The simple act of ren-
dering the attacker’s rich-media advertisement is sufficient to mount a DNS
rebinding attack. Our experiments indicate that this technique is an order of
magnitude more cost effective than creating and operating a traditional bot
network.

To prevent these attacks, we recommend specific changes to the security
policies of plug-ins such as Flash Player and Java. The vendors of these plug-
ins have adopted our suggestions and deployed patches to their users, pre-
venting widespread exploitation of socket-level DNS rebinding vulnerabilities.
To prevent firewall circumvention, we recommend that organizations deploy a
circumvention-resistant DNS resolver, such as dnswall, that prevents external
host names from resolving to internal IP addresses. These resolvers are now
part of several open-source distributions, including FreeBSD, and have been
deployed at a number of organizations.

Even with these defenses deployed, servers on the public Internet can still
be targeted by DNS rebinding attacks. A server can defend itself against these
attacks by validating the HTTP Host header because the header contains the
attacker’s host name during an attack. Upon receiving an unexpected Host
header, a server should respond with a redirect to a URL containing the correct
host name. This defense is especially important for servers that place trust,
either explicitly or implicitly, in the browser’s IP address.

ACKNOWLEDGMENTS

We thank D. Dean, D. Fisher, J. Grossman, M. Johns, D. Kaminsky, C. Karlof,
dJ. Roskind, and D. Wallach for their helpful suggestions and feedback. We thank
Google for providing the resources to implement dnswall.

REFERENCES

ApoBE. 2006. Adobe Flash Player 9 security. http:/www.adobe.com/devnet/flashplayer/articles/
flash_player_9_security.pdf.

ApoBe. 2008. Flash Player penetration. http:/www.adobe.com/products/player_census/flash-
player/.

ACM Transactions on the Web, Vol. 3, No. 1, Article 2, Publication date: January 2009.



Protecting Browsers from DNS Rebinding Attacks . 2:25

Arexa. 2007. Top sites. http://www.alexa.com/site/ds/top_sites?ts_mode=global.

AnviL, K. 2007. Anti-DNS pinning + socket in flash. http://www.jumperz.net/.

ArENDS, R., AUsTEIN, R., Larson, M., Massey, D., anp Rosg, S. 2005. DNS security introduction
and requirements. RFC 4033.

Bortz, A., BarTH, A., AND Jackson, C. 2007. Google dnswall. http:/code.google.com/p/google-
dnswall/.

CHESHIRE, S., ABoBA, B., anD GurtMAN, E. 2005. Dynamic configuration of IPv4 link-local ad-
dresses. IETF RFC 3927.

Cueswick, W. aND Berroviy, S. 1996. A DNS filter and switch for packet-filtering gateways. In
Proceedings of the USENIX Annual Technical Conference.

Daswant, N. anp StopPELMAN, M.  2007. The anatomy of Clickbot.A. In Proceedings of 1st Workshop
on Hot Topics in Understanding Botnets (HotBots).

DEan, D., Feuren, E. W., anp Warrace, D. S, 1996. Java security: From HotJava to Netscape and
beyond. In IEEE Symposium on Security and Privacy.

Epwarps, D. 2005. Your MOMA knows best. http:/xooglers.blogspot.com/2005/12/your-moma-
knows-best.html.

Famerir, F. 2008. The OpenWrt embedded development framework. In Free and Open Source
Software Developers’ European Meeting.

Fenzi, K. aND WReskr, D.  2004. Linux security HOWTO.

FieLping, R., GETTYS, J., MoGUL, J., FRYSTYK, H., MASINTER, L., LEACH, P., AND BERNERS-LEE, T. 1999.
Hypertext Transfer Protocol—HTTP/1.1. RFC 2616.

Fisuer, D. 2007. Personal communication.

Fisger, D. ET AL, 2003. Problems with new DNS cache (“pinning” forever).
https://bugzilla.mozilla.org/show_bug.cgi?id=162871.

GAJEK, S., SCHWENK, dJ., AND XUaN, C. 2008. On the insecurity of Microsoft’s identity metasystem.
Tech. Rep. HGI-TR-2008-003, Horst Gortz Institute for IT Security, Ruhr University Bochum.
May. http://demo.nds.rub.de/cardspace/.

Goopin, D. 2005. Calif. man pleads guilty to felony hacking. Assoc. Press.

GOTTSCHALL, S. ET AL.  2008. DD-WRT (version 24). http:/www.dd-wrt.com/.

GriMM, S. ET AL. 2002. Setting document.domain doesn’t match an implicit parent domain.
https://bugzilla.mozilla.org/show_bug.cgi?id=183143.

GrossMmAN, J. AND NiepziaLkowski, T. 2006. Hacking intranet Websites from the outside:
JavaScript malware just got a lot more dangerous. In Blackhat USA. Invited talk.

Hauvpr, E. 2008. dnswall FreeBSD port. http://www.freebsd.org/cgi/cvsweb.cgi/ports/dns/dnswall/.

HinDEN, R. AND DEERING, S.  2003. Internet protocol version 6 (IPv6) addressing architecture. IETF
RFC 3513.

HinpEN, R. aAND HaBERMAN, B.  2005. Unique local IPv6 unicast addresses. IETF RFC 4193.

JAcksoN, C. AND BartH, A. 2008. Beware of finer-grained origins. In Web 2.0 Security and Privacy.

Jouns, M. 2006. (Somewhat) breaking the same-origin policy by undermining DNS pinning.
http://shampoo.antville.org/stories/1451301/.

Jouns, M. AND WINTER, J.  2007. Protecting the Intranet against “JavaScript Malware” and related
attacks. In Proceedings of the GI International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA).

Karror, C. K., SHANKAR, U., Tycar, D., AND WaGNER, D.  2007. Dynamic pharming attacks and the
locked same-origin policies for Web browsers. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS).

KeLLEY, S. 2008. Dnsmasq (version 2.41). http:/www.thekelleys.org.uk/dnsmasqg/doc.html.

Kiemw, A. 2006. Host header cannot be trusted as an anti anti DNS-pinning measure.
http://www.securityfocus.com/archive/1/445490.

Lawm, V. T, AnTonaTOS, S., AKRITIDIS, P., AND ANacNosTAKIS, K. G. 2006. Puppetnets: Misusing
Web browsers as a distributed attack infrastructure. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS).

Maong, G. 2007a. DNS spoofing/pinning. http:/sla.ckers.org/forum/read.php?6,4511,14500.

Maong, G. 2007b. NoScript. http:/noscript.net/.

Mecacz, A. 2002. XWT Foundation security advisory. http:/www.megacz.com/research/sop.txt.

MEecacz, A. AND MEKETA, D.  2003. X-RequestOrigin. http:/www.xwt.org/x-requestorigin.txt.

ACM Transactions on the Web, Vol. 3, No. 1, Article 2, Publication date: January 2009.



2:26 o C. Jackson et al.

MEevYER, D. 1998. Administratively scoped IP multicast. IETF RFC 2365.

MicrosorT. 2004. Microsoft Web enterprise portal. http:/www.microsoft.com/technet/itshowcase/
content/MSWebTWP.mspx.

MicrosorT. 2008. Socket class (System.Net.Sockets). http:/msdn.microsoft.com/en-us/library/
system.net.sockets.socket(VS.95).aspx.

Mirre. 2007a. CVE-2007-5273.

Mitre. 2007b. CVE-2007-5274.

Mirre. 2007c. CVE-2007-5275.

Mirtre. 2007d. CVE-2007-6244.

Mrrre. 2008. CVE-2008-1192.

MockapeTtris, P. 1987. Domain names—Implementation and specification. IETF RFC 1035.

Nuuga, C. 2007. Personal communication.

OLLMANN, G.  2005. The pharming guide. http:/www.ngssoftware.com/papers/ThePharmingGuide.
pdf.

REKHTER, Y., MoskowITz, B., KARRENBERG, D., DE GROOT, G. J., AND LEAR, E. 1996. Address allocation
for private Internets. IETF RFC 1918.

ReyNoLDS, J. AND PosTEL, J. 1994. Assigned numbers. IETF RFC 1700.

Roskinp, J. 2001. Attacks against the Netscape browser. In RSA Conference. Invited talk.

Ross, D. 2007. Notes on DNS pinning. http://blogs.msdn.com/dross/archive/2007/07/09/notes-on-
dns-pinning.aspx.

RuperMAN, J. 2001. JavaScript security: Same origin. http:/www.mozilla.org/projects/security/
components/same-origin.html.

Sorer, J. 2003. DNS: Spoofing and pinning. http://viper.haque.net/ timeless/blog/11/.

SpamHAUS. 2007. The Spamhaus block list. http://www.spamhaus.org/sbl/.

Stamm, S., Ramzan, Z., AND JakoBssoN, M. 2006. Drive-By pharming. Tech. Rep. 641, Computer
Science Department, Indiana University. December.

Torr, J. 2001. HTML form protocol attack. http:/www.remote.org/jochen/sec/hfpa/hfpa.pdf.

VEDITZ, D. ET AL. 2002. Document.domain abused to access hosts behind firewall. https:/bugzilla.
mozilla.org/show_bug.cgi?id=154930.

WARNER, B. 2004. Home PCs rented out in sabotage-for-hire racket. Reuters.

WINTER, J. AND JorNs, M.  2007. LocalRodeo: Client-Side protection against JavaScript Malware.
http://databasement.net/labs/localrodeo/.

Received June 2008; revised September 2008; accepted October 2008

ACM Transactions on the Web, Vol. 3, No. 1, Article 2, Publication date: January 2009.



