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Abstract

With the proliferation of content rich web applications,
content injection has become an increasing problem.
Cross site scripting is the most prominent example of
this. Many systems have been designed to mitigate con-
tent injection and cross site scripting. Notable examples
are BEEP, BLUEPRINT, and Content Security Policy,
which can be grouped as HTML security policies. We
evaluate these systems, including the first empirical eval-
uation of Content Security Policy on real applications.
We propose that HTML security policies should be the
defense of choice in web applications going forward. We
argue, however, that current systems are insufficient for
the needs of web applications, and research needs to be
done to determine the set of properties an HTML secu-
rity policy system should have. We propose several ideas
for research going forward in this area.

1 Introduction

Content injection attacks, and in particular cross-site
scripting (XSS) attacks, are a significant threat to web
applications [26, 3]. These attacks violate the integrity
of web applications, steal from users and companies, and
erode privacy on the web. Researchers have focused a
great deal of effort at preventing these attacks, ranging
from static detection to dynamic checking of content.

The classic approach to stopping content cross-site
scripting attacks is by the careful placement of sanitiz-
ers. Sanitizing, or filtering, is the removal of poten-
tially harmful content or structure from untrusted data.
Sanitization places a heavy burden on developers; they
must identify where untrusted data appears in their ap-
plication, what that data is allowed to do, and the con-
text the data appears in on the final page. Unfortunately,
these are not straightforward processes. Sanitization is a
very brittle process, prone to error. Besides often miss-
ing untrusted data in their application, it is not always

obvious what sanitization method to apply in what con-
text [25, 16].

In response, several alternatives have been pro-
posed in the literature, most notably, BEEP [8],
BLUEPRINT [21], and Content Security Policy
(CSP) [18]. These proposals suggest very different
mechanisms for preventing XSS and, in some of the
cases, more general content injection. Previously, these
have been viewed separate proposals with different
approaches to the same problem. However, we identify
these proposals as instances of a more general notion of
client-side HTML security policies.

We argue that HTML security policies are superior
to sanitization and should be the core defensive mecha-
nism against content injection in future web applications.
However, we also argue and show that the current pro-
posals for HTML security policies fall short of their ul-
timate design goals. We argue that HTML security poli-
cies should be at the core of web application security, but
much research still needs to be done in building success-
ful HTML security policy systems. We put forth several
suggestions for future research, but generally leave next
steps as an open problem.

HTML Security Policy Systems We focus on BEEP,
BLUEPRINT, and Content Security Policy. We examine
these systems to understand their respective power and
limitations. While all three provide working systems for
expressing and implementing HTML security policies,
CSP is of particular importance because it is deployed
in Firefox 4 [17]. We evaluate the efficacy of all three,
including the first empirical evaluation of CSP on real ap-
plications by retrofitting Bugzilla [1] and HotCRP [2] to
use CSP. We conclude that none of these systems solves
the content injection or XSS problems sufficiently:

• BEEP has serious limitations in dealing with dy-
namic script generation. This is especially prob-
lematic in today’s web frameworks that support and
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encourage templating across all types of code. Ad-
ditionally, it does not provide any support for non-
XSS content injection.

• BLUEPRINT has significant performance prob-
lems. These are not superficial; there are inherent to
its approach in avoiding use of the browser’s parser.

• CSP can cause significant performance problems
in large applications because of the restrictions on
code it enforces. Additionally, it does not fit well
into the web framework programming model.

Proposals We argue that going forward, web frame-
works should use HTML security policies instead of san-
itization as the basis of their protection against content
injection. However, the security community needs to de-
cide on a set of requirements that HTML security poli-
cies should hold going forward. In the end, new HTML
security policy systems, and perhaps new browser prim-
itives, need to be developed by the research community
to solve the content injection problem.

2 HTML Security Policies

Content injection occurs when untrusted user input
changes the intended parse tree of a document [5, 13].
In the case of a web page, this happens when a user input
is placed on a page, and the user input contains control
structures (such as HTML tags or JavaScript code) that
the developer did not intend to be present. By definition,
this allows an attacker to modify the behavior of the page
in unexpected ways, changing the developer’s intended
semantics. XSS is a specific type of content injection
where the attacker modifies the document’s structure to
place a script on the page.

Web developers generally use sanitization to defend
from content injection, but sanitization can be difficult
to get right. Thus, researchers have proposed several
other mechanisms for protecting web applications from
content injection. Three well known proposals, BEEP,
BLUEPRINT, and Content Security Policy (CSP), are in-
stances of HTML security policy systems. HTML secu-
rity policy systems provide mechanisms for an applica-
tion to specify how a document is parsed and interpreted
by the browser on the client, in contrast to the syntactic
approach of sanitization on the server, where unwanted
syntax is removed before it reaches the client.

In HTML security policy systems, a policy is pro-
vided to the browser when a web page is loaded, and
as the browser renders the page, it enforces that the page
matches the HTML security policy. This is particularly
useful in the context of a web server providing dynami-
cally generated content where a policy is hard to enforce

statically (such as a page containing user comments, a
news aggregator, etc.).

The advantages of HTML security policy systems over
sanitization are several fold. The key improvement is that
developers do not need to search for the precise place
in code that untrusted data may appear. In sanitization,
these places are hard to find, and even when found, it is
not necessarily clear what sanitizer to apply (i.e. does
the untrusted data appear between HTML tags, or is it
part of an attribute, or another context entirely?) [25].
In comparison, one of the goals of HTML security pol-
icy systems is to specify allowed behavior, not to limit
the syntax at these precise points.

Additionally, in HTML security policy systems, there
is an explicit policy to enforce, in contrast to the ad-hoc
application of sanitizers. This suggests that HTML secu-
rity policies are easier to audit than sanitization. A de-
veloper can check a policy against their security model,
rather than searching an application for sanitizers and
building a policy from that.

Because of these properties, and the unreliability of
and difficulty in using sanitizers, we argue that HTML
security policy systems should be used going forward
in web applications to help solve the content injection
problem instead of sanitization. However, the current set
of available HTML security policy systems have several
major problems in their design.

2.1 Existing Policy Systems

While there are many different HTML security pol-
icy systems, we focus on three of the most cited,
BEEP [8], BLUEPRINT [21] and CSP [18]. These three
systems take two very different approaches to the same
problem: how to stop untrusted content from injecting
additional structure into a web page. They are all partic-
ularly concerned with cross-site scripting attacks.

BEEP BEEP focuses on XSS instead of the more gen-
eral content injection problem. BEEP implements a
whitelist of trusted scripts that may execute and rejects
the execution of any script not on the whitelist. Thus,
only trusted, developer-built scripts may execute on the
client, and any injected scripts will fail to do so.

Unfortunately, BEEP’s handling of dynamically gen-
erated scripts does not match the web framework model.
BEEP requires that the hash of a script be statically de-
termined or that the script is added by a trusted script. By
definition, if the script is generated dynamically, its hash
cannot be determined statically. One can imagine a sys-
tem with scripts that add dynamically generated scripts,
but this is very different from how web applications and
frameworks currently handle code generation.
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Additionally, BEEP does not handle content injection
other than XSS, which have recently been seen in real
sites [22]. Also, attacks on BEEP have been developed
similar to return-to-libc attacks [4]. While more com-
plex than traditional XSS, the existence of such attacks
is cause for concern.

BLUEPRINT BLUEPRINT presents a system for
parsing document content using a trusted, cross-
platform, JavaScript parser, rather than browsers’ built
in parsers. The authors view HTML parsers in different
browsers as untrustworthy because of browser quirks and
view the cross-site scripting problem as fundamentally
arising from this. Their approach provides the browser
with a “blueprint” of the structure of the page, and a
JavaScript library builds the page from the blueprint
rather than trusting the browser’s HTML parser.

This “blueprint” is an HTML security policy. The
server parses the document itself and generates the struc-
tural blueprint of the document. This is communicated
to the browser where it is used by the BLUEPRINT
JavaScript library to build the document. The blueprint
is a step-by-step instruction set for the structure of the
page, and if any of the content violates this structure, it
violates the policy and is removed.

One of the key assumptions of the authors is that server
applications “know how to deal with untrusted content.”
Unfortunately, the authors make this assumption with-
out defending it. There certainly are numerous cases of
server applications that do not understand how to prop-
erly deal with untrusted content; this is the basis of
SQL injection attacks [23]. A tool that could help well-
intentioned developers stop potentially untrusted content
would help to alleviate this.

Additionally, BLUEPRINT unfortunately suffers from
several performance problems. In the original paper, the
authors report 55% performance overhead in applying
BLUEPRINT to Wordpress and 35% performance over-
head in applying it to MediaWiki. Because of its very na-
ture, BLUEPRINT cannot use the efficient parsing prim-
itives of the browser; it relies entirely on building the
document from the blueprint with the JavaScript parser.

Content Security Policy (CSP) To our knowledge,
CSP is the first HTML security policy system to be im-
plemented and released by one of the major browser ven-
dors (in Firefox 4). CSP takes a different view of the
browser than BLUEPRINT. Instead of “not trusting” the
browser’s parsing decision, CSP implements a declara-
tive policy that the browser then enforces on the applica-
tion. CSP trusts the browser for enforcement, conceding
that an application may be flawed.

CSP does this by developing a large set of properties
that may be set on a per page basis. All trust is based on

the page level by CSP properties that state trusted servers
for scripts, images, and a variety of other content. This
provides a strong fail-safe property. Because the entire
page is covered by the policy, the policy will apply to all
untrusted content wherever it appears on the page.

The types of properties that CSP provides include
trusted servers for images, scripts, and other content, but
it also includes one particularly important property. This
is the inline-scripts property, which, by default,
is disabled. When disabled, this means that the browser
will not allow any scripts to execute within the page; the
only scripts that may be run are ones included by the
src attribute of a <script> tag. This is fundamen-
tally how CSP prevents XSS attacks. Because no script
content is allowed to run within the page, and the devel-
oper may set a small number of trusted servers for scripts
to come from, an injection attack can add a script but it
either will not run because it is inline, or it will not run
because it will have a src pointing to an attacker’s un-
trusted server.

CSP rules are a declarative way of specifying the dy-
namic semantics of a web page. CSP specifies a set
of semantic rules on a per page basis. However, con-
tent injection is a syntactic problem where the abstract
syntax tree of a document is modified by an untrusted
source [19, 13]. It would be possible to keep adding
semantic rules to CSP, but a new rule would be needed
for each semantic consequence of all possible syntactic
changes. Because of this, CSP only provides rules for
stopping a small set of injection attacks, namely XSS
and specific types of content (such as <iframe> tags
whose src attribute points to an untrusted server). CSP
does not stop general content injection, and for it do so
would require an ever growing set of rules.

CSP’s declarative, page level, fail safe architecture is
enticing. However, it places severe restrictions on how
web application pages can be structured. We evaluate
how these restrictions affect real web applications.

3 Evaluating the Application of CSP

To evaluate the efficacy of CSP as an HTML security pol-
icy, we apply it to two popular, real world applications.
We determine the HTML security policies necessary to
stop injection attacks and apply the policies to the appli-
cations. We modify the applications to work with these
policies. We evaluate the performance of these appli-
cations using CSP, and measure the effort of modifying
these applications.

3.1 Methodology
The applications we experiment on are Bugzilla [1] and
HotCRP [2]. Bugzilla is a web application for orga-
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nizing software projects and filing and tracking bugs,
used by many large companies and open source projects,
including RedHat, Mozilla, Facebook, and Yahoo! [6].
HotCRP is a conference manager used for paper submis-
sion and review by several major conferences.

We retrofit the applications to execute properly with
a known CSP policy that blocks XSS. As a manual pro-
cess, we run the program and explore its execution space
by clicking through the application. We modify the ap-
plications to correct any violations of the CSP policy by
the applications. This does not provide completeness
but we feel this most accurately represents what a de-
veloper would need to do to apply CSP to her applica-
tion. While static and dynamic analysis tools have the
potential to help, we are unaware of such tools for the
Template Toolkit [20] language that Bugzilla is written
in.

3.2 Application Modifications
The major part of transforming Bugzilla and HotCRP is
converting inline JavaScript to external JavaScript files
that are sourced by the HTML page. Because CSP poli-
cies are of page level granularity, it cannot reason about
individual scripts on a page. Thus, in order to prevent
XSS with CSP, it must reject inline scripts and only
source scripts from trusted servers. The consequence of
this is that completely trusted scripts must be moved to
separate files.

Data Access In the implementations of Bugzilla and
HotCRP, there are a variety of inline scripts that refer-
ence data and variables generated by the templating lan-
guages. such as configuration information or the number
of search results. This data is not untrusted input. Un-
fortunately, when the scripts are segregated into separate
files from the templated HTML, the variables and data
can no longer be referenced by the templating language
in the script source file. This is because the templating
languages for both Bugzilla and HotCRP treat the indi-
vidual page as a scoping closure; variables are not shared
between separately sourced pages. We address this by
creating additional hidden HTML structure and storing
the necessary data in an attribute. Later, we extract this
via additional JavaScript on the client.

DOM Manipulation DOM manipulation becomes
necessary in a number of other contexts as well. Take
as an example dynamically generated JavaScript. In
HotCRP there are several scripts that interact with lists of
papers. For each of the papers in the lists, there are inline
JavaScript handlers for each entry, such as onclick
handlers. Because CSP does not allow inline scripts, in-
cluding handlers, these handlers must be inserted dynam-

Page No Inline JS Async JS
index.php 14.78%± 4.5 −3.0%± 4.25
editsettings.php 6.3%± 4.7 5.1%± 0.92
enter bug.cgi 57.6%± 2.5 44.2%± 2.1
show bug.cgi 51.5%± 2.8 4.0%± 3.0

Table 1: Percent difference in performance between
modified Bugzilla and original with 95% confidence in-
tervals.

ically by JavaScript. Thus, for each paper entry in the
list, we use PHP to generate a span with a predictable
name, such as name="paper-name-span", and also
contains a data-paper-name attribute. When the
JavaScript executes, it searches for all elements with the
name paper-name-span, and extracts the name of
the element to add a handler to.

Additional Application Logic Another pattern we ob-
serve is the required movement of templating logic into
JavaScript. Because the JavaScript is no longer inlined,
the conditional branching in the templates no longer can
affect it. Thus, it must replicate the same conditionals
and checks dynamically. Using the same techniques as
we discussed earlier, we replicate where necessary tem-
plating conditionals in JavaScript based on data passed
in DOM element attributes. This adds additional perfor-
mance costs to the execution, but also provides additional
points of failure for the transformation.

Total Modifications Overall, the types of modifica-
tions to Bugzilla and HotCRP closely mirrored one an-
other. This was particularly interesting given that they
used two unrelated templating frameworks, Template
Toolkit and PHP, respectively. In both cases, it was nec-
essary to transfer data and variables to JavaScript through
HTML structure, create significant additional DOM ma-
nipulations to build the application, and to move and du-
plicate application logic from the server to the client.

Our modifications were substantial, adding 1745 lines
and deleting 1120 lines of code in Bugzilla and adding
1440 lines and deleting 210 lines of code in HotCRP. We
also observed an increase in the number of GET requests
and data transferred for Bugzilla and HotCRP.

3.3 Performance
The performance of the applications are affected in sev-
eral different ways. During the application modification,
we observe several particular modifications that relate to
performance:

• Additional script source files In order to remove
inline scripts from Bugzilla and HotCRP, we add a
number of new script source files. When possible,
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Page No Inline JS Async JS JS Template
index.php 45.3%± 6.3 37.2%± 5.0 27.9%± 3.7
search.php 52.9%± 5.4 50.4%± 3.7 20.2%± 3.9
settings.php 23.3%± 2.7 16.1%± 8.2 —
paper.php 61.1%± 9.5 58.5%± 8.7 19.1%± 2.5
contacts.php 67.8%± 4.8 35.5%± 4.9 —

Table 2: Percent difference in performance between
modified HotCRP and original with 95% confidence in-
tervals and JQuery Templating performance.

we consolidate what were separate inline scripts
into one source file, but this is not always possible.
For example, if a script uses document.write,
the script must be placed in a specific location. Ad-
ditionally, many scripts are conditional on templat-
ing branching, and should only occur if specific ele-
ments exist or particular properties hold. These ex-
tra files have the potential to add latency to page
load and execution.

• New DOM manipulations As discussed above, to
transfer data and variables from the template to the
script, we attach the data to HTML elements and
use JavaScript to extract the data through the DOM.
These extra DOM accesses can be costly operations
in what would have otherwise been static data.

Results Our performance evaluation results can be
seen in Tables 1 and 2 for a random set of pages for
each application, measured in the Chrome web browser
network performance tool. After our experiments fin-
ished, we observed that one of the major performance
slow downs appeared to be the synchronous loading of
script sources. Since our modifications required an in-
crease in the number of external scripts, we modified
the pages to use the async attribute in the <script>
tags where possible. This allows those scripts to load
asynchronously. This change substantially improved the
performance of the applications, but in most cases, not
enough to approach the original performance.

Our results show that using CSP for Bugzilla and
HotCRP is both a complex task and may harm perfor-
mance. We show that CSP requires changes to how both
applications are structured. While CSP has several de-
sirable properties, such as page level granularity and a
fail safe architecture, this shows that, like BEEP and
BLUEPRINT, it would be difficult to deploy with a se-
cure setting on complex applications.

4 Related Work

There is extensive work how to discover and eliminate
XSS vulnerabilities in web applications [7, 27, 9, 10, 28].

There has been work on both eliminating these vulnera-
bilities on the server and in the client. This work has
focused on treating XSS as a bug to be eliminated from
an application, keeping XSS vulnerabilities from even
reaching production systems. This means that much of
this work is static analysis, but some work has focused
on dynamic techniques on the server [24]. Other work,
specifically KUDZU [14] and FLAX [15], have focused
on symbolic execution of client-side JavaScript.

Sanitization, or content filtering, is the elimination of
unwanted content from untrusted inputs. Sanitization is
applied explicitly by an application or a framework to
the untrusted content. Sanitization is almost always done
on the server; generally, the goal is to remove the un-
wanted content before it reaches the client. Sanitiza-
tion is usually done as a filter over character elements of
string looking for “control” characters, such as brackets
in HTML. XSS-GUARD [5] and ScriptGard [16] argue
that it is necessary to look at sanitization as a context
sensitive problem.

There have also been a number of other HTML secu-
rity policy systems proposed [11, 12]. We focused on
three of the most discussed in the literature, but future
evaluations would, of course, need to take these into ac-
count as well.

5 Towards HTML Security Policies

While current HTML security policy systems are not suf-
ficient for today’s web applications because of their per-
formance problems and requirements on how applica-
tions are built, they provide very enticing properties. Re-
search should evaluate HTML security policies and how
to build better HTML security policy systems. Towards
this goal, we start the conversation with several points
and questions about HTML security policy systems.

• Researchers should determine the set of properties
that an HTML security policy system should have.
For example, CSP’s page-level granularity is simple
as a policy, but puts an undue burden on developers
in how they write and retrofit applications. Is this
the right trade-off to make?

• From the problems of the systems we observe to-
day, what can we learn? We identified a number
of properties systems should not have, such as ex-
tensive restrictions on how code is written. Should
we just accept these problems to reap the benefit of
HTML security policies?

• Combining these systems may be fruitful. For ex-
ample, a combination approach of BEEP and CSP
that allows inlined scripts if they are on a BEEP-
like whitelist but also allows external scripts may
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be an improvement in usability over either system
independently. What features can we extract and
combine from current systems to build new ones?

• Should new HTML security policy systems work
in legacy browsers or focus on state-of-the-art
browsers? For example, it seems likely that
BLUEPRINTs performance shortcomings could be
addressed with better browser support. On the
other hand, retrofitting applications for new browser
primitives can be a struggle, as seen with CSP.

6 Conclusion

HTML security policies should be the central mechanism
going forward for preventing content injection attacks.
They have the potential to be much more effective than
sanitization. However, the HTML security policy sys-
tems available today have too many problems to be used
in real applications. We presented these issues, includ-
ing the first empirical evaluation of CSP on real-world
applications. New HTML security policy systems and
techniques need to be developed for applications to use.
As a first step, research needs to identify the properties
needed in HTML security policy systems.
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